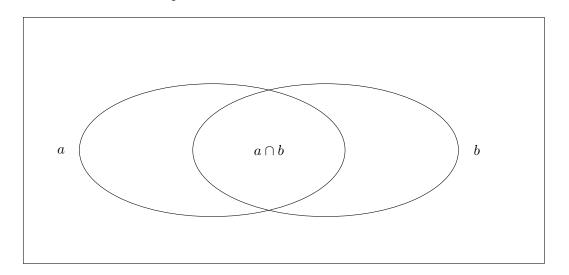
Logique des classes (logique booléenne) - diagrammes

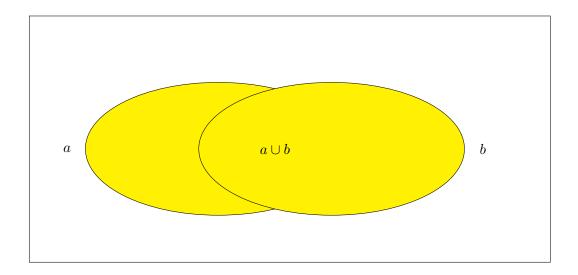
Alain Lecomte L2 Sciences du Langage

1 Diagrammes de Venn

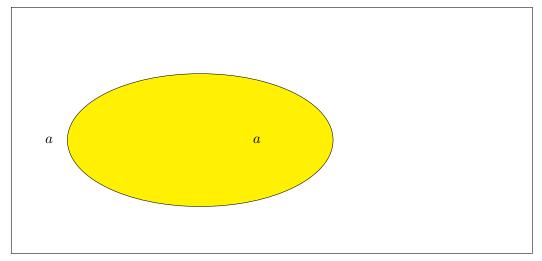
Les classes sont représentées par des régions du plan délimitées par des cercles ou des ovales. L'univers est représenté par un rectangle qui les contient toutes. Soit a et b deux classes, on représente leur intersection, $a \cap b$ comme ci-dessous :



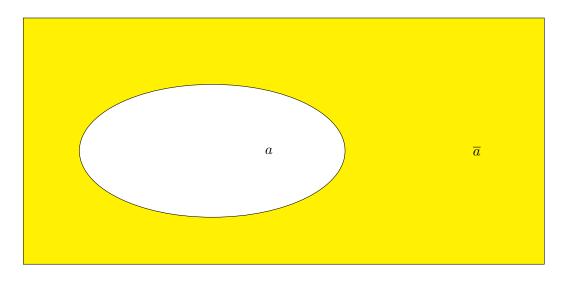
Leur union, $a \cup b$ par la partie en jaune dans la figure ci-dessous :



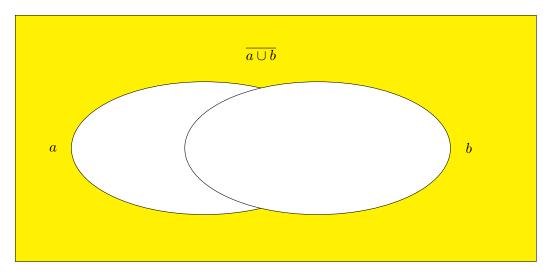
Soit a la classe en jaune ci-dessous :



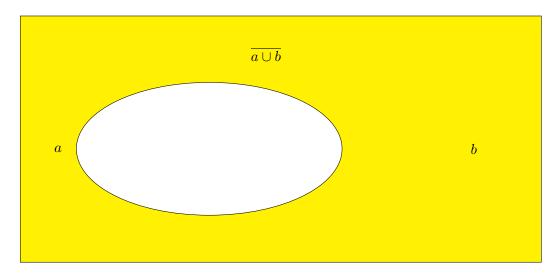
sa complémentaire, \overline{a} , est représentée par la partie en jaune ci-dessous :

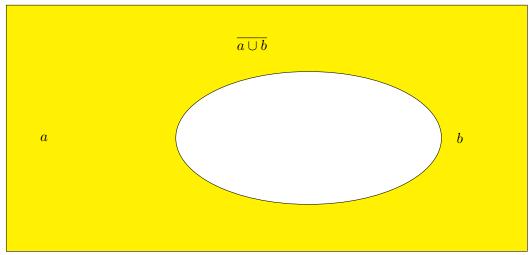


Noter alors que la classe complémentaire de $a\cup b$, c'est-à-dire la classe $\overline{a\cup b}$ est représentée par la partie en jaune ci-dessous :



qui est l'intersection des deux parties en jaune suivantes :





ce qui "montre" que $\overline{a \cup b} = \overline{a} \cap \overline{b}$

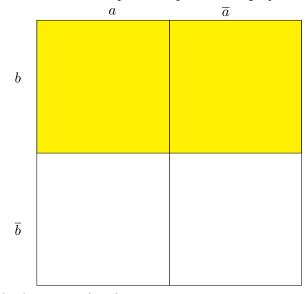
2 Diagrammes de Lewis Carroll

Etant donnée une classe a dans un univers \mathcal{U} , elle coupe l'univers en deux, une partie qui correspond à a et une autre qui correspond à \overline{a} (les objets qui sont des a et les objets qui ne sont pas des a). On a évidemment : $a \cup \overline{a} = \mathcal{U}$ et $a \cap \overline{a} = \emptyset$.

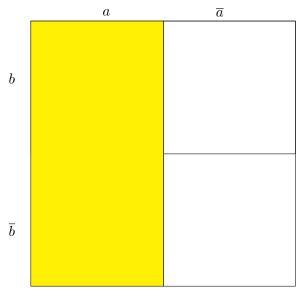
Si on ajoute une deuxième classe, b, elle divise aussi l'univers en deux, mais maintenant, si on considère les deux classes en même temps, elles divisent l'univers en quatre : les objets qui sont a et b, les objets qui sont a mais pas b, les objets qui sont b mais pas a et les objets qui ne sont ni des a ni des b. Le diagramme suivant représente cette situation :

	a	\overline{a}
b	$a\cap b$	$\overline{a}\cap b$
$ar{b}$	$a\cap \overline{b}$	$\overline{a}\cap \overline{b}$

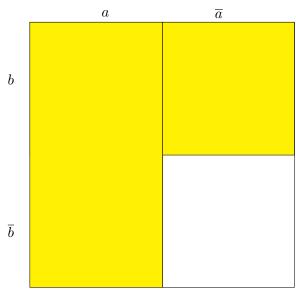
La classe b est donc représentée par le rectangle jaune suivant :



et la classe a par le suivant :

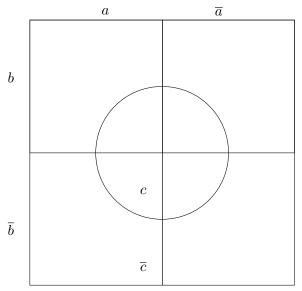


 $a \cup b$ est donc l'union de ces deux rectangles, ce qui donne :

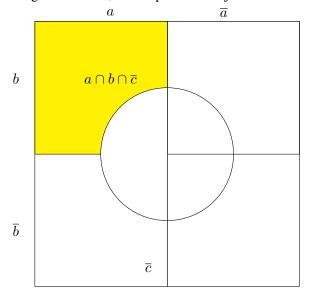


où on constate facilement que $\overline{a \cup b} = \overline{a} \cap \overline{b}$ (le carré blanc qui reste).

Si on introduit maintenant une troisi \tilde{A} lme classe, c, on pourra la mettre au centre de la figure (ici un cercle) de sorte qu'on ait maintenant une division de l'univers en 8. L'int \tilde{A} l'rieur du cercle est c, son ext \tilde{A} l'rieur est \bar{c} .

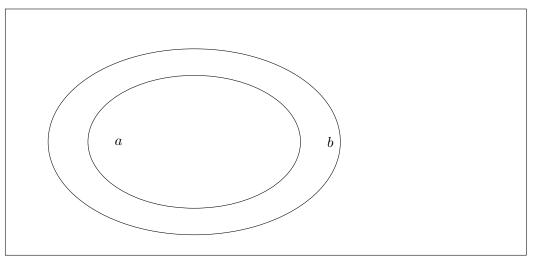


Sur la figure suivante, on a représenté en jaune la classe $a\cap b\cap \overline{c}$:



3 Inclusion

Il est facile de représenter l'inclusion grâce aux diagrammes de Venn. $a\subset b$ (a est inclus dans b) dans la figure suivante :



Pour représenter l'inclusion dans les diagrammes de Lewis carroll, on est obligé de passer par la propriété fondamentale :

$$a \subset b \qquad \Leftrightarrow \qquad a \cap \overline{b} = \emptyset$$

(dire que a est inclus dans b, c'est dire que tous les a sont des b, autrement dit qu'il n'y a pas de a qui ne soient pas b!). D'où le diagramme :

