
The Duality of Computation

Pierre-Louis Curien (CNRS and University Paris 7)� Hugo Herbelin (INRIA-Rocquencourt)y
ABSTRACTWe present the ��~�-
al
ulus, a syntax for �-
al
ulus +
on-trol operators exhibiting symmetries su
h as program/
on-text and
all-by-name/
all-by-value. This
al
ulus is derivedfrom impli
ational Gentzen's sequent
al
ulus LK, a key
lassi
al logi
al system in proof theory. Under the Curry-Howard
orresponden
e between proofs and programs, we
an see LK, or more pre
isely a formulation
alled LK�~�,as a syntax-dire
ted system of simple types for ��~�-
al
ulus.For ��~�-
al
ulus,
hoosing a
all-by-name or
all-by-valuedis
ipline for redu
tion amounts to
hoosing one of the twopossible symmetri
 orientations of a
riti
al pair. Our anal-ysis leads us to revisit the question of what is a naturalsyntax for
all-by-value fun
tional
omputation. We de�nea translation of ��-
al
ulus into ��~�-
al
ulus and two dualtranslations ba
k to �-
al
ulus, and we re
over known CPStranslations by
omposing these translations.
1. INTRODUCTIONProgramming languages present impli
it symmetries su
has input/output, or program/
ontext. Less obviously { asshown re
ently by Selinger in a
ategori
al setting [20℄ {, thepi
ture
an be extended to evaluation me
hanisms: thereexists a symmetry between
all-by-name and
all-by-value.On the logi
al side, the best �t for eviden
ing symmetries issequent
al
ulus (based on left and right introdu
tion rules).But the
orresponden
e between programs and proofs is tra-ditionally explained through natural dedu
tion (based onright introdu
tion and right elimination rules), impli
ationelimination (also
alled Modus Ponens)
orresponding topro
edure appli
ation. We believe that this tradition is ingood part misleading. In this paper, we present a sequent�E-mail: Pierre-Louis.Curien�pps.jussieu.fryE-mail: Hugo.Herbelin�inria.fr

al
ulus style syntax that exhibits the above symmetries ina pre
ise, (and { we believe {
ompelling) way.A key step in this program was already a

omplished in[11℄, where it was shown that simply-typed �-terms (or ��-terms) in (
all-by-name) normal form are in bije
tive
orre-sponden
e with
ut-free sequent
al
ulus proofs in a suitablerestri
tion of Gentzen's LJ (or LK) [8℄. Danos, Joinet, andS
hellinx identi�ed the same restri
tion of LK { and
alledit LKT { as part of a thorough investigation of linear logi
en
odings of
lassi
al proofs [5, 6℄. Having gained throughthis
orresponden
e the \naturalness" that was making thenatural dedu
tion usually preferred in pra
ti
e, there wasno reason any longer not to systemati
ally study �-
al
ulusthrough sequent
al
ulus rather than through the traditionalCurry-Howard
orresponden
e with natural dedu
tion. Se-quent
al
ulus is far more well-behaved than natural de-du
tion: it enjoys the subformula property, and destru
tionrules {
uts { are well
hara
terized in
ontrast with theelimination rules of natural dedu
tion whi
h superimposeboth a
onstru
tion and a destru
tion operation: the appli-
ation is a
onstru
tor in a term xM , but is destru
tive ina term (�x:M)N .The leading goal at the root of the present work was to
on-
eive a \sequent
al
ulus" version of
all-by-value �-
al
ulusand ��-
al
ulus. Our starting point was the observationthat the
all-by-value dis
ipline manipulates input mu
h inthe same way as (the
lassi
al extension of) �-
al
ulus ma-nipulates output. Computing MN in
all-by-value
an beviewed as �lling the hole (hen
e an input) of the
ontextM [℄ with the result of the evaluation of N . So the fo
us ison
ontexts waiting for values { a situation that sounds dualto that of (output) values being passed to
ontinuations.This leads us to a syntax with three di�erent synta
ti

at-egories:
ontexts, terms, and
ommands1. Commands arepairs
onsisting of a term and a
ontext, they represent a
losed system
ontaining both the program and its environ-ment. Correspondingly, we type these di�erent
ategorieswith three kinds of sequents. The usual sequents � ` �type
ommands, while the sequents typing terms (
ontexts)1Danos has also re
ognized the relevan
e of these three
ate-gories in [4℄ where he extends the work of Ogata [16℄ on therelation between LKQ and
all-by-value CPS-translations(LKQ is the other natural restri
tion of LK
onsidered in[5, 6℄).

are of the form � ` A j� (� jA ` �). The symbol \j"serves to single out a distinguished
on
lusion/output (hy-pothesis/input), whi
h stands for \where the
omputationwill
ontinue" (\where it happened before").In the rest of this introdu
tion, we o�er as a prologue asimple justi�
ation of the relevan
e of sequent
al
ulus tothe
omputational study of the �-
al
ulus. Call-by-nameevaluation in the �-
al
ulus
an be spe
i�ed by the followinginferen
e rule: M !� �x:PMN ! P [x N ℄ :This re
ursive spe
i�
ation may be implementedwith a sta
kas follows: (MN ; S) ! (M ; N :: S)(�x:P ; N :: S) ! (P [x N ℄ ; S)This simple devi
e is
alled Krivine abstra
t ma
hine. It
an be rephrased using
ontexts instead of sta
ks:(MN ; E) ! (M ; E[[℄N ℄)(�x:P ; E[[℄N ℄) ! (P [x N ℄ ; E)(Re
all that a
ontext is a �-term with a hole, denoted [℄,whi
h
an be �lled with a term, or another
ontext: e.g.,E[[℄N ℄ is the
ontext obtained by �lling the hole of E withthe
ontext [℄N .) Consider the evolution of the types of theholes in the
ontexts during the exe
ution of the rules. IfN has type A and if the hole of E has type B, then thehole of E[[℄N ℄ has type A ! B. This
orresponds to aleft introdu
tion of impli
ation (note that holes in
ontexts
orrespond to inputs). Then the se
ond rule of Krivine ab-stra
t ma
hine reads as a
ut between an impli
ation whi
hhas been introdu
ed on the right and an impli
ation whi
hhas been introdu
ed on the left. We are here in the worldof sequent
al
uli, not of natural dedu
tion.In se
tion 2, we re
all the se
ond author's sequent
al
ulusanalysis of (
all-by-name) ��-
al
ulus. In se
tion 3, we dis-
uss how to add
all-by-value to the pi
ture. This leads usin se
tion 4 to ��~�-
al
ulus and its typing system LK�~�,a logi
al system for
lassi
al logi
 (limited to the impli
a-tion
onne
tive) with the three kinds of sequents introdu
edabove. In parti
ular, we exhibit the symmetry between the
all-by-name and
all-by-value dis
iplines, by means of dualorientations of a single
riti
al pair. In se
tion 5, we an-alyze two subsyntaxes: the ��~�T -
al
ulus and the ��~�Q-
al
ulus, and the
orresponding sequent
al
uli LKT�~� andLKQ�~�. These
al
uli
orrespond to LKT and LKQ; theirrelation with linear logi
 is explained in appendix B. Ourtranslation of the ��-
al
ulus arrives in the interse
tion ofthese subsyntaxes, and the target redu
tion stays in ��~�T -
al
ulus (��~�Q-
al
ulus) in the
all-by-name (
all-by-value)dis
ipline.Se
tion 6 is a \reverse engineering" exer
ise. Guided bythe goal of translating
all-by-value normal forms into ��~�Qnormal forms, we revisit sour
e
all-by-value evaluation andsyntax: we work on an extension of the �-
al
ulus with alet
onstru
t, and then on a restri
tion of this extensionwhi
h in our opinion is the
all-by-value
ounterpart of the

�-
al
ulus.In se
tion 7, we
omplete the duality by adding the
on-ne
tive \-" (the di�eren
e). This allows us to exhibit fullythe duality between terms and
ontexts. In se
tion 8, welink our analysis to both the
lassi
al and the more re
entworks on
ontinuation semanti
s. Finally, in se
tion 9, we
omplete the des
ription of
ut-elimination in LK�~�. We
on
lude in se
tion 10.
2. CALL-BY-NAME ��-CALCULUS IN SE-

QUENT CALCULUS STYLEIn this se
tion we present (a variant of) the ��-
al
ulus of[11℄. This
al
ulus is to sequent
al
ulus what ��-
al
ulusis to natural dedu
tion. (The syntax and the typing rules ofsimply-typed ��-
al
ulus are re
alled in appendix A.) Thesyntax (as well as those of the subsequent se
tions) embodiesthe three synta
ti

ategories dis
ussed in the introdu
tion:Commands
 ::= hvjEiContexts E ::= � jj v �ETerms v ::= x jj ��:
 jj �x:vIts typing system is a sequent
al
ulus based on judgementsof the following form:
 : (� ` �) � jE : A ` � � ` v : A j�and typing rules are given below:� j� : A ` � : A;��; x : A ` x : A j�� ` v : A j� � jE : B ` �� j (v �E) : A! B ` �
 : (� ` � : B ; �)� ` ��:
 : B j��; x : A ` v : B j�� ` �x:v : A! B j�� ` v : A j� � jE : A ` �hvjEi : (� ` �)The notations hvjEi
an be read as some
ontext E[℄ �lledwith v; when E = �, it be
omes just another notation forthe naming
onstru
tion [�℄v in ��-
al
ulus.Terms
an be redu
ed by the following redu
tions rules:(!) h�x:v1j(v2 �E)i ! hv1[x v2℄jEi(�) h��:
jEi !
[� E℄Normal forms are those terms where either v = x or (E = �and v 6= ��:
) in subexpressions of the form hvjEi.

Remark 2.1. Our treatment of ��-
al
ulus does not fol-low any longer the \
ut=redex" paradigm of sequent
al
ulusas in [11℄. Another treatment
ould have been to add the two(
ontra
tion) rules �; x : A jE : A ` �hxjEi : (�; x : A ` �)� ` V : B j � : B ; � (V = x or V = �x:v)hV j�i : (� ` � : B ; �)and restri
t the
ut rule to the other
ombinations of v; E.Then we have the \
ut=redex" paradigm of sequent
al
ulus,but another annoying phenomenon shows up: there are twoderivations of hxj�i. This
an in turn be solved by removingthe introdu
tion rule for x but then hvjEi does not any longerin
lude the hxjEi
onstru
tion whi
h must be added expli
itlyin the grammar. No perfe
t world.Until se
tion 9, we ignore the expli
it pro
ess of substitution,i.e., as in natural dedu
tion, we
onsider that the repla
e-ment is a
tually
arried out
ompletely in a single step. Thismakes it easier to
onvey our main observations and results.We note that any normal ��-term v has the following form:v ::= x jj ��:
 jj �x:v
 ::= h�x:vj�i jj hxjv1 � : : : vn � �iWe now de�ne two translations N and n of ��-
al
ulus intothe ��-
al
ulus. The translation N preserves normal forms,while the translation n is
ompositional, i.e., preserves thestru
ture of (appli
ative) terms.The translation N involves a parameterization by a
ontext(a tri
k that goes ba
k to Plotkin's so-
alled
olon transla-tion [18℄):xN = x(�x:M)N = �x:MN(��:
)N = ��:
N([�℄M)N =MN�(MN)NE =MNNN �EV NE = hV N jEi where V = x jj �x:M jj ��:MProposition 2.2. The translation N maps normal termsto normal terms.Proof. A ��-normal form is either a variable x, or an ab-stra
tion �x:M (��:
) where M (
)is normal, or an expres-sion [�℄M where M is normal and not a � abstra
tion, or anexpression xM1 : : :Mn. The latter two
ases
orrespond tothe two situations in whi
h a \
ut" hvjEi is not a redex.Noti
e that the term ��:[�℄(: : : (xM1) : : :Mk) and its trans-lation ��:hxj(MN1 � (: : : (MNk � �) : : :))i are essentially thesame terms, up to a rearrangement. In the translation N ,appli
ative terms are turned the other way round: a vari-able applied to a �rst argument then to a se
ond and so

on be
omes (an en
oding of) a variable applied to a list ofarguments.With simple adjustments (
onsisting in restri
ting inessen-tially the syntax of the ��-
al
ulus and in atomizing the (�)-rule), the statement of proposition 2.2
an be improved: itis essentially an isomorphism, i.e., a bije
tion that preservesredu
tion step by step both ways. Consider the followingrestri
tion of the syntax of the ��-
al
ulus that disallowsappli
ations in
ontexts of the form �x:[℄ and M [℄ (this isno real restri
tion sin
e any appli
ationMN
an be repla
edby an expansion ��:[�℄(MN),
f. appendix A):v ::= x jj �x:v jj ��:

 ::= [�℄aa ::= v jj avAs for redu
tion, we de
ompose the (�) rule of ��-
al
ulusin smaller steps a

ording to the form of the
ontext:(�app) h��:
jv �Ei ! h��:(
[� v � �℄)jEi(�var) h��:
j�i !
[� �℄With these adjustments, proposition 2.2
an be restated as:The translation N is an isomorphism: it is bije
-tive, maps normal forms to normal forms, andpreserves redu
tions step by step.The translation n whi
h we de�ne now is
ompositional butdoes not preserve normal forms. This sort of translationis quite well known, sin
e it amounts to translate naturaldedu
tion into sequent
al
ulus.xn = x(�x:M)n = �x:Mn(��:
)n = ��:vn([�℄M)n = hMnj�i(MN)n = ��:hMnjNn � �iThe translation n maps a normal form to its image by theprevious translation modulo the use of the rule (�) only(\administrative redexes"). Thanks to the insertion of �at ea
h appli
ation node, the translation simulates the re-du
tion rule of ��-
al
ulus without need to re�ne the (�)rule.Proposition 2.3. The translation n is a homomorphismfrom ��-terms to ��-terms, i.e., it preserves (
all-by-name)redu
tion. Moreover, for any ��-term M , Mn redu
es byrepeated appli
ations of the rule (�) to MN .Proof. Preservation of redu
tion is trivial. Note that thepreservation is even step to step: if v1 ! v2, then vn1 ! vn2 .The se
ond part of the statement is an easy
onsequen
e ofthe following:(��:[�℄(xM1 : : :Mk)n !?��:hxj(Mn1 � (: : : (Mnk � �) : : :))i (k (�) steps)

Remark 2.4. Without logi
al nor
omputational loss, onemay for
e the body of a �-abstra
tion to have the form ��:
(expanding �x:v as �x:��:hvj�i when ne
essary). This ob-servation leads to a variant of the ��-
al
ulus where the �-abstra
tion is repla
ed by a double abstra
tion �(x; �):
, withthe following typing rule:
 : (�; x : A ` � : B;�)� ` �(x; �):
 : A! B j�.
3. CALL-BY-VALUE: INTRODUCING ~�Traditionally, one explains how to en
ode
all-by-name in
all-by-value by introdu
ing expli
it operators that freezethe evaluation of arguments. The same idea
an be appliedto en
ode
all-by-value on top of
all-by-name, now freezingthe fun
tion until its argument is evaluated. The familiar
onstru
t let x = N in P
an be understood in this way.Suppose that we want to
ompute an appli
ation MN in a
all-by-value dis
ipline. A �rst step may
onsist in writing(let x = N in Mx), with the intention that N should beevaluated before being passed to Mx, or equivalently thatthe appli
ation of M should be delayed until the argumentN is evaluated. With this aim, we introdu
e a new bindingoperator ~�, whi
h will turn out to be dual to �. In �rstapproximation, we en
ode (let x = N in P) as hN j~�x:P i.The
orre
t en
oding is a
tually��:hN j~�x:hP j�ii :The ~�-abstra
tion allows us to turn (or freeze) the expressionP into a
ontext waiting for the value of N . If P = Mx,then we get ��:hN j~�x:h��0:hM jx ��0ij�ii, whi
h redu
es by(�) to ��:hN j~�x:hM jx � �ii. What is the typing rule for ~�?First, if
 is a
ommand, then ~�x:
 is a
ontext (whi
h isdual to ��:
). The typing rule is as follows:
 : (�; x : B ` �)� j ~�x:
 : B ` �One adds the following
ut-elimination rule:(~�) hvj~�x:
i !
[x v℄whi
h forms a
riti
al pair with the (�)-rule, in any
om-mand of the form h��:
1j~�x:
2i. We impose that the (�)-rule has priority in su
h a redex, yielding
1[� ~�x:
2℄.The (
ompositional) interpretation of the ��-
al
ulus is nowrede�ned as follows:xv = x(MN)v = ��:hNv j~�x:hMvjx � �ii(�x:M)v = �x:Mv([�℄M)v = hMv j�i(��:
)v = ��:
vWe next show how the
all-by-value redu
tion is simulatedthrough this translation:((�x:M)N)v = ��:hNv j~�x:h�x:Mvjx � �ii!(!) ��:hNv j~�x:hMvj�ii!(~�) ��:hMv [x Nv℄j�i(N = x or �y:P)

The last unfreezing step is
onditioned by the form of Nv:if N is a value in the sense of [18℄, i.e., is an abstra
tionor a variable, then the (~�)-redu
tion
an be applied. Oth-erwise, Nv begins with a �, whi
h prevents an immediateappli
ation of (~�) and for
es the evaluation of Nv .A �nal remark before we
an start to
apitalize our analy-sis of
all-by-name and
all-by-value is that the translationwe just de�ned for
all-by-value works as well as it standsfor
all-by-name, provided one
hanges the priorities in theredu
tion system. If one now applies ~� as early as possible,then Mv redu
es by repeated use of the ~� rule to Mn. Wede�ne the
all-by-name (
all-by-value) dis
ipline as the ap-pli
ation of the three rewrite rules (!), (�), and (~�) givingpriority to (~�) (to (�)). Then, in
all-by-name, Mn is justan optimized version of the translation Mv. This justi�esto use a neutral symbol, say y, instead of v and proposition2.3
an now be rephrased as follows:The translation y is a homomorphism from ��-terms to ��-terms for
all-by-name redu
tion.Moreover, for any ��-term M , Mn redu
es byrepeated appli
ations of the rules (~�) and (�) toMN .This suggests to
onsider a
all-by-value
ounterpart V totranslation N and to proposition 2.2. But this raises thequestion of what should a
tually be
onsidered as
all-by-value normal forms in the �-
al
ulus. We defer this analysisuntil se
tion 6.
4. THE SYSTEM LK�~�Colle
ting together the ingredients of the last two se
tions,we arrive at the ��~�-
al
ulus whose syntax is
 ::= hvjeiv ::= x jj ��:
 jj �x:ve ::= � jj ~�x:
 jj v � eand evaluation rules are:(!) h�x:v1jv2 � ei ! hv2j~�x:hv1jeii(�) h��:
jei !
[� e℄(~�) hvj~�x:
i !
[x v℄Observe we have not supposed yet any
ommitments for
all-by-name or
all-by-value redu
tion. This depends onthe order of the last two rules:Call-by-value
onsists in giving priority to the(�)-redexes (whi
h serve to en
ode the terms,say, of the form MN), while
all-by-name givespriority to the (~�)-redexes.The two dis
iplines are hereafter referred to as CBN redu
-tion and CBV redu
tion, respe
tively.At the typing level, we obtain LK�~� whose typing judge-ments are:
 : (� ` �)� ` v : A j�� j e : A ` �

and whose typing rules are:� ` v : A j� � j e : A ` �hvjei : (� ` �)� j� : A ` � : A;��; x : A ` x : A j�
 : (� ` � : B;�)� ` ��:
 : B j�
 : (�; x : A ` �)� j ~�x:
 : A ` �� ` v : A j� � j e : B ` �� j v � e : A! B ` ��; x : A ` v : B j�� ` �x:v : A! B j�A ��-term is translated into a ��~�-term as follows:xy = x(MN)y = ��:hNyj~�x:hMyjx � �ii(�x:M)y = �x:My([�℄M)y = hMyj�i(��:
)y = ��:
yand a judgement � ` M : A j� of the ��-
al
ulus is trans-lated into a LK�~� judgement � LK�~�` My : A j�.Remark 4.1. The above formulation of the rule (!) isdi�erent from that of se
tion 2, but is
losely related to it:the former (!) is just the appli
ation of the new (!) im-mediately followed by (~�), whi
h is always possible in CBNredu
tion, and is possible in CBV redu
tion when v2 is avariable or an abstra
tion, as required by the
all-by-valuedis
ipline of the �-
al
ulus. (See also the de
omposition of
all-by-value � redu
tion in two steps, using an expli
it let,in se
tion 6.) The new formulation of the rule presents someredundan
y with the translation y: the old version of (!)works as well as the new one as far as the redu
tion of someMy is
on
erned, and the simpler translation n would workas well as the translation y even in
all-by-value providedone takes the new version of (!). But in the larger
ontextof the full LK�~�, the new rule is the only one to make sensein CBV, while the translation y has been designed in su
ha way that its image (unlike that of n) lies in the interse
-tion of two natural subsystems of LK�~�, whi
h we introdu
enext.

5. TWO WELL-BEHAVED SUBSYNTAXESIn this se
tion, we de�ne sub
al
uli of ��~�-
al
ulus that we
all ��~�T -
al
ulus and ��~�Q-
al
ulus be
ause their typingsystems
orrespond to the systems LKT and LKQ of [5, 6℄.Their de�nition is guided by the requirement of stability un-der
all-by-name and
all-by-value evaluation, respe
tively(propositions 5.1 and 5.3).Syntax of ��~�T Judgements of LKT�~�
 ::= hvjeiv ::= x jj ��:
 jj �x:vE ::= � jj v �Ee ::= ~�x:
 jj E
 : (� ` �)� ` v : A j�� ; E : A ` �� j e : A ` �The
ontexts E are
alled appli
ative
ontexts. The typingrules are the same as those of LK�~� for hvjei, ��:
, ~�x:
, x,and �x:v. The other rules are as follows:� ; � : A ` � : A;�� ` v : A j� � ; E : B ` �� ; (v �E) : A! B ` �� ; E : A ` �� jE : A ` �In the judgement � ; E : A ` �, the sign \;" not only de-lineates a distinguished hypothesis, but also puts linearity
onstraints on this hypothesis: it is a stoup, in the termi-nology of Girard [9℄. Note that impli
it
ontra
tions arepresent in the left impli
ation rule. On the other hand, the~� me
hanism is the only way to swit
h from a distinguishedhypothesis to another hypothesis. The synta
ti
 restri
tionson LKT�~� say that this
an be done only at the pri
e ofturning the \;" into a \j". Putting these observations to-gether, we see that the rules of LKT�~� guarantee that aformula in the stoup is never subje
t to a
ontra
tion rule.For the same reasons, it
annot be subje
t to a weakeningrule (weakening outside the stoup is impli
it in the typingrule for �).Proposition 5.1. For any ��-term M , My and any ofits CBN redu
ts in ��~�-
al
ulus lies in ��~�T -
al
ulus.Remark 5.2. The typing system
onsidered in se
tion 2lives within LKT�~�. Therefore, we shall
all it LKT�. Inretrospe
t, in that se
tion, we should have written � ; E :A ` � as judgement instead of � jE : A ` �. Noti
e alsothat with n or N instead of y, one has a sharpening: theredu
ts of the translation lie all in the ��-
al
ulus, in either
ase.We now turn to the
all-by-value restri
tion.

Syntax of ��~�Q Judgements of LKQ�~�
 ::= hvjeiV ::= x jj �x:vv ::= ��:
 jj Ve ::= � jj ~�x:
 jj V � e
 : (� ` �)� ` V : A ; �� ` v : A j�� j e : A ` �The terms V are
alled values. The typing rules are thesame as in LK�~� for hvjei, ��:
, ~�x:
, �, and �x:v. Theother rules are as follows:�; x : A ` x : A ; �� ` V : A ; � � j e : B ` �� j (V � e) : A! B ` ��; x : A ` V : B j�� ` �x:V : A ! B ; �� ` V : A ; �� ` V : A j�Proposition 5.3. For any ��-term M , My and any ofits CBV redu
ts in ��~�-
al
ulus lies in ��~�Q-
al
ulus.Hen
e, for any ��-term M , My stands in the interse
tionof LKT�~�-
al
ulus and ��~�Q-
al
ulus (it uses only V 's andE's, in our notation), and its redu
ts stay in the relevantsubsyntax on
e an evaluation dis
ipline has been �xed.The systems ��~�T -
al
ulus and ��~�Q-
al
ulus are also well-behaved without referen
e to the ��-
al
ulus. It is easy to
he
k that ��~�T -
al
ulus (��~�Q-
al
ulus) is stable underCBN (CBV) redu
tion and that normal
ommands lies in��-
al
ulus (�~�-
al
ulus, de�ned in next se
tion).
6. WHAT IS CBV �-CALCULUS?In se
tion 2, we arrived at a perfe
t
orresponden
e be-tween
all-by-name ��-normal forms and (
all-by-name) ��-normal forms. We wish to rea
h the same goal for
all-by-value normal forms. Moreover, for the purposes of duality,we wish to eliminate the need of the �-operation to en
ode
all-by-value
omputation, sin
e we did not need the ~� oper-ator to en
ode
all-by-name
omputation. Re
all Plotkin'sde�nition of
all-by-value redu
tion:(�V) (�x:M)V ! M [x V ℄(V variable or abstra
tion) :A typi
al (�V) normal form is thus (�x:M)(yN), whosetranslation��:h��:hNyj~�z:hyjz � �iij~�t:h�x:Myjt � �ii
ontains a (!) redex. A simple way out of this �rst obsta
leis to extend the syntax of the �-
al
ulus with a let
onstru
t:M ::= x jj �x:M jj MN jj let x = N in M

and to repla
e (�V) by the following redu
tion rules:(let) (�x:M)N ! (let x = N in M)(a appli
ation or let expression)(let�) (let x = V in M) ! M [x V ℄(V variable or abstra
tion)Then we extend the translation in the following way:(let x = N in M)y = ��:hNyj~�x:hMyj�ii :But
onsider now a term of the form (�xx0:M)(yN)V , whi
his normal for �V , and whose (let) + (let�) normal form is(let x = yN in �x0:M)V . We have:((let x = yN in �x0:M)V)y=��:hV yj~�z:h��0:h(yN)yj~�x:h�x0:Myj�0iijz � �ii#(~�)��:h��0:h(yN)yj~�x:h�x0:Myj�0iijV y � �i#(�)��:h(yN)yj~�x:h�x0:MyjV y � �ii#(!)��:h(yN)yj~�x:hMy[x0 V y℄j�ii=(let x = yN in My[x0 V y℄)yHen
e the translation is able to redu
e the \hidden" redex(�x0:M)V . To
ure this mismat
h, we introdu
e a furtherrule in the sour
e language:(letapp) (let x = a in M)N ! (let x = a in (MN))(x not free in N) :This rule allows us to redu
e (�xx0:M)(yN)V as follows:(�xx0:M)(yN)V ! (let x = yN in �x0:M)V! let x = yN in (�x0:M)V! let x = yN in M [x0 V ℄ :Consider now a term of the form (�x:M)((�y:V)(zN)) (ynot free in M), whi
h is normal for �V , and whose (let) +(let�) normal form is let x = (let y = zN in V) in M . Wehave: (let x = (let y = zN in V) in M)y=��:h��0:h(zN)yj~�y:hV yj�0iij~�x:hMyj�ii#(�)��:h(zN)yj~�y:hV yj~�x:hMyj�iii#(~�)��:h(zN)yj~�y:hMy[x V y℄j�ii=(let y = zN in M [x V ℄)yHere again the translation is able to redu
e the \hidden"redex (let x = V in M). This leads us to introdu
e anotherrule: (let let) let x = (let y = N in M) in P! let y = N in (let x =M in P)(y not free in P)It is easily
he
ked that the (let)+(let�)+(letapp)+(let let)normal forms are as follows:M ::= x jj �x:M jj let x = xMM1 : : :Mn in M jj xMM1 : : :Mn

It is possible at this stage to write a translation V from thisset of normal forms to ��~�-terms in
all-by-value normalform. But we would have to use � in the translation, typi-
ally in a term like x(yM), for whi
h one has to write(x(yM))V� = hxj��:hyjMV � �i � �i :In order to avoid pla
ing appli
ative subterms in the
on-texts, and hen
e in order to a
hieve our se
ond goal of \get-ting rid of �", we introdu
e a last rule:(letexp) Ma! (let x = a in Mx)(a appli
ation or let expression)The (let)+(let�)+(letapp)+(let let)+(letexp) normal formsare as follows:V ::= x jj �x:MM ::= V jj let x = yV V1 : : : Vn in M jj xV V1 : : : VnWe are now ready for our
all-by-value normal form to nor-mal form translation, whi
h is de�ned below. Note the useof the double abstra
tion (
f. remark 2.4 { the point is thatwe need � only under a �):xV = x(�x:M)V = �(x;�):MV�V V� = hV V j�i(xV V1 : : : Vn)V� = hxjV V � V V1 � : : : � V Vn � �i(let x = yV V1 : : : Vn in M)V�= hyjV V � V V1 � : : : � V Vn � ~�x:MV� iIn this translation, there is no �. This suggests to
onsidera
al
ulus symmetri
 to the ��-
al
ulus of se
tion 2, whi
hwe therefore
all the �~�-
al
ulus. At the typing level, we
all the system LKQ~�, to stress that it is a subsystem ofLKQ�~� (just as LKT� is a subsystem of LKT�~�,
f. remark5.2). Syntax of �� (LKT�) Syntax of �~� (LKQ~�)
 ::= hvjEiv ::= x jj �(x;�):
 jj ��:
E ::= � jj v �E
 ::= hV jeiV ::= x jj �(x; �):
e ::= � jj ~�x:
 jj V � eThe rewrite rules for LKQ~� are (~�) and the following newin
arnation of the rule (!):h�(x;�):
jV � ei !
[x V; � e℄Reading this ba
k in �-
al
ulus style, we arrive at the fol-lowing syntax, whi
h we
all �~�-
al
ulus:
 ::= [�℄(V V1 : : : Vn) jj let x = V V1 : : : Vn in
V ::= x jj �(x;�):
where usual �x:V
an be seen as a short
ut for �(x; �):[�℄V(� not free in V). We
onsider the following redu
tion rulesfor �~�-
al
ulus:(�1V) let x = (�(x;�):
1)V1 : : : Vn in
2!
1[x V1℄[[�℄a let x = aV2 : : : Vn in
2℄(�2V) [�℄((�(x; �):
)V1 : : : Vn)!
[x V1℄[[�℄a [�℄(aV2 : : : Vn)℄(let�) let x = V in
 !
[x V ℄

where
[[�℄a e℄ is the term obtained by repla
ing ev-ery o

urren
e of [�℄(V V1 : : : Vn) in
 by e where a is re-pla
ed by (V V1 : : : Vn). Remark that (�V) derives dire
tlyfrom (�2V)(seeing �x:V as a short
ut for �(x;�):[�℄V). Thetranslation V is straightforwardly adapted to �~�-terms, andde�nes in fa
t a bije
tion between the two syntaxes:xV = x(�(x;�):
)V = �(x;�):
V([�℄(V V1 : : : Vn))V = hV V jV V1 � : : : � V Vn � �i(let x = V V1 : : : Vn in
)V = hV V jV V1 � : : : � V Vn � ~�x:
V iWe
an now state the CBV
ounterpart of proposition 2.2.Proposition 6.1. The translation V is an isomorphismfrom �~�-terms to �~�-terms.Remark 6.2. In [19℄, Sabry and Felleisen
hara
terizedthe theory indu
ed on �-
al
ulus by the
all-by-value CPStranslation as the theory indu
ed by the following two equa-tions in addition to (�V):(�lift) E[(�x:M)Q℄ = (�x:E[M ℄)P)(E ::= [℄ jj EN jj (�x:P)E)(�
at) xV1V2 = (let y = xV1 in yV2)Our rules (letapp) and (let let)
orrespond exa
tly to (�lift)(
ases EN and (�x:P)E, respe
tively). Note that the other(let) rules are transparent from the point of view of the �-
al
ulus (without let). The rule (�
at), interpreted from rightto left,
orresponds to the following �-like equation2:~�x:hxjei = E (x not free in e)Hen
e Sabry and Felleisen's analysis of
all-by-value �-
al
u-lus agrees with ours. What is new here is the sequent
al
ulusperspe
tive whi
h among others suggests us the
hoi
e of afun
tional syntax (the �~�-terms).
7. COMPLETION OF THE DUALITYIn order to dualize terms and
ontexts, we introdu
e a
on-ne
tive dual to impli
ation: the di�eren
e
onne
tive, de-noted \-". The syntax of ��~�-
al
ulus is extended as follows(we still
all the extension ��~�-
al
ulus):
 ::= hvjeiv ::= x jj ��:
 jj �x:v jj e � ve ::= � jj ~�x:
 jj v � e jj ��:eWe add the following
omputation rule:(�) h(e2 � v)j��:e1i ! hvje1[� e2℄iand the following typing rules to LK�~�::� j e : B ` �� j ��:e : B �A ` �2This equation is dual to the equation ��:[�℄M =M (� notfree in M) in ��-
al
ulus (
f. appendix A).

� j e : A ` � � ` v : B j�� ` (e � v) : B �A j�We de�ne a duality of ��~�-
al
ulus into itself whi
h worksas follows at the type level:XÆ = X(A! B)Æ = BÆ �AÆ(B �A)Æ = AÆ ! BÆThe translations
Æ, vÆ, and eÆ of
ommands, terms, and
ontexts are de�ned by re
ursively applying the followingtable of duality:x � �� ~�x e � v v � e �x ��� x ~�x �� v � e e � v �� �xProposition 7.1. In LK�~�, we have:
 : (� ` �)� ` v : A j�� j e : A ` � 9=;, 8<:
Æ : (�Æ ` �Æ)�Æ j vÆ : AÆ ` �Æ�Æ ` eÆ : AÆ j�ÆOne
an extend the de�nition of ��~�T -
al
ulus and ��~�Q-
al
ulus in su
h a way that the above proposition restri
tsand re�nes to a duality between ��~�T -
al
ulus and ��~�Q-
al
ulus. We just give the extended syntax of ��~�T -
al
ulusand ��~�Q-
al
ulus and leave the rest to the reader:��~�T -
al
ulus ��~�Q-
al
ulus
 ::= hvjeiv ::= x jj ��:
 jj �x:v jj E � vE ::= � jj v �E jj ��:ee ::= ~�x:
 jj E
 ::= hvjeiV ::= x jj �x:
 jj e � Vv ::= ��:
 jj Ve ::= � jj ~�x:
 jj v � e jj ��:e
8. CPS TRANSLATIONSIn this se
tion, R stands for a �xed (arbitrary) type
on-stant. We de�ne a translation of LK�~� types into intuition-isti
 types (i.e., the types of the simply-typed �-
al
ulus,written using the mathemati
al notation where BA meansthe spa
e of fun
tions from A to B) as follows:X/ = X(A! B)/ = RA/�RB/(B �A)/ = B/ �RA/Note that if we read R as \false", then the image of thetranslation of A ! B (resp. B � A) reads as
lassi
allyequivalent to A ! B (resp. B � A). We next de�ne atranslation of LK�~�-terms to �-terms as follows:hvjei/ = v/e/�/ = �x/ = �k:kx(��:
)/ = ��:
/(~�x:
)/ = �x:
/(�x:v)/ = �k:k(�(x; �):v/�)(v � e)/ = �k:v/(�x:k(x; e/))(��:e)/ = �(y; �):e/y(e � v)/ = �k:v/(�y:k(y; e/))

Proposition 8.1.
 : (� LK�~�` �)� LK�~�` v : A j�� j e : A LK�~�` � 9>>>=>>>; =) 8>>><>>>: �/; R�/ �̀
/ : R�/; R�/ �̀ v/ : RRA/�/; R�/ �̀ e/ : RA/Moreover, the translation validates the CBV dis
ipline.Remark 8.2. When restri
ted to LKQ�~�, proposition 8.1
an be sharpened in su
h a way that the following additionalimpli
ation holds:� ` V : A ; � =) �/; R�/ �̀ V / : A/provided one translates x as x, �x:V as �(x; �):V /� and Vas �k:kV / when
onsidered as a v.Note that the disymmetry of the �-
al
ulus for
es the
all-by-value orientation of the (�)� (~�)
riti
al pair:h��:
1j~�x:
2i/ = (��:
/1)(�x:
/2)!
/1[� �x:
/2℄ :But the translation also takes
are of the
all-by-name dis-
ipline, via duality. We set . = / Æ Æ. Then we have:X. = X(A! B). = B. �RA.(B �A). = R(B!A). = RA.�RB.Note that this time A. reads as
lassi
ally equivalent to:A[X :X℄. Note also that .
an alternatively be takenas primitive and / de�ned as / = . Æ Æ.Proposition 8.3.
 : (� LK�~�` �)� LK�~�` v : A j�� j e : A LK�~�` � 9>>>=>>>; =) 8>>><>>>: R�. ;�. �̀
. : RR�. ;�. �̀ v. : RA.R�. ;�. �̀ e. : RRA.Moreover, the translation validates the CBN dis
ipline.Combining . and / with the translation y from ��-terms, weobtain two CPS-translations to �-terms:(CBN) � ��̀ M : A j�) �.; R�. �̀ My . : RA.(CBV) � ��̀ M : A j�) �/; R�/ �̀ My/ : RRA/The two translations are known in the literature: My. is the(
all-by-name) Lafont-Hofmann-Strei
her translation [13℄ ofM , and My/ is the
all-by-value Plotkin-Fis
her translationof M [18℄. The following di
tionary is useful to re
ognize

this: CBN CBVKA = AÆ/CA = RKA VA = A/KA = RVACA = RKAC�; K� �̀ MyÆ/ : CA V�; K� �̀ My/ : CAKA!B= (BÆ �AÆ)/= KB �CA VA!B= RVA�RVB�= VA ! CBHere, the letters V , K, and C stand for values,
ontinu-ations, and
omputations, respe
tively. Lafont-Hofmann-Strei
her semanti
s maps
omputations to
omputations andinterprets a
ontinuation of type A! B as a pair of a
om-putation of typeA and a
ontinuation of typeB (think of thesta
k N :: S of se
tion 1). Plotkin-Fis
her
all-by-value se-manti
s maps values to
omputations, and interprets a valueof type A! B as a fun
tion from values to
omputations.
9. HEAD REDUCTION IN AN ABSTRACT

MACHINEIn this se
tion, we spe
ify two kinds of (weak) head redu
-tion ma
hine.The �rst ma
hine is quite standard and based on environ-ments. Instead of
ommands hvjei, we manipulate expres-sions having the form hvf�1gjef�2gi, where �1 and �2 are(expli
it) environments, i.e., lists of bindings of the form(x = vf�g) or (� = ef�g). Given �1 and x, we write�1(x) = vf�2g if (x = vf�2g) is the �rst binding of x ap-pearing in �1. The notation hvjeif�g is a shorthand forhvf�gjef�gi. To evaluate a
ommand
, we start the ma-
hine with
fg.h(�x:v1)f�1gj(v2 � e)f�2gi! hv1f(x = v2f�2g) :: �1gjef�2gih(��:
)f�1gjef�2gi!
f(� = ef�2g) :: �1ghvf�1gj(~�x:
)f�2gi!
f(x = vf�1g) :: �2ghxf�1gjef�2gi! h�1(x)jef�2gi (�1(x) is de�ned)hvf�1gj�f�2gi! hvf�1gj�2(�)i (�2(�) is de�ned)Remark that bindings of terms (
ontexts) have the restri
tedform (x = V f�g) ((� = Ef�g)) when redu
ing CBV (CBN).The se
ond ma
hine exploits the idea of en
oding environ-ments by means of indexes in a sta
k as in the Pointer Ab-stra
t Ma
hine from Danos-Regnier [7℄ (a restri
tion of itwas studied in a previous work of the authors [3℄).

The sta
k is a sequen
e of bindings that bind either a termor a
ontext. Ea
h binding denotes both a
losure and anenvironment of whi
h it is the more re
ent binding. Ea
hbinding
omes with two indexes The �rst index points inthe sta
k to where the environment of the term (or
ontext)whi
h turns it into a
losure begins. The se
ond index pointsto where the environment of whi
h the binding is the morere
ent
losure goes on. The
on
rete syntax for bindings is:(x n= vfpg) or (� n= efpg) (n; p natural numbers) :A state of the ma
hine is hvfpgjefqgis. If s is a sta
k, wedenote by s � n the sta
k popped n times and by jsj itslength. To evaluate hvjei, we start from hvf0gjef0gi. Therules of the ma
hine are as follows:h(�x:v1)fpgj(v2 � e)fqgifsg! hv1fp+ 1gjefqgif(x p= v2fqg) :: sgh(��:hvje0i)fpgjefqgifsg! hvfjsjgje0fjsjgif(� p= efqg) :: sghvfpgj(~�x:hv0jei)fqgifsg! hv0fjsjgjefjsjgif(x q= vfpg) :: sghxfpgjefqgifsg! h(s� p)(x)jefqgi ((s� p)(x) is de�ned)hvfpgj�fqgifsg! hvfpgj(s� q)(�)i ((s� q)(�) is de�ned)hvfpgjefqgifsg! hvfpgjefqgifs�min(jsj � p; jsj � q)gwhere ((x n= vfpg) :: s)(x) = vfpg((y n= vfpg) :: s)(x) = (s� n)(x) x 6= y((� n= efqg) :: s)(x) = (s� n)(x)and similarly for s(�).Remark 9.1. The last rule a
ts as a garbage
olle
tingrule: it removes the part of the sta
k whi
h is used neitherby the term (the
ode) nor by its
ontext. For instan
e, ina fun
tional language with
at atomi
 types (even with �x-points, e.g. PCF), the appli
ation of the last rule guaranteesthat a program of atomi
 type ends with an empty sta
k.
10. RELATED AND FUTURE WORKSThis se
tion
ontains mis
ellaneous remarks organized alonghopefully helpful keywords.� Symmetry. Altogether, we have de�ned six
al
uli: thefull ��~� syntax in CBN and CBV dis
ipline (se
tion 4),the subsyntaxes ��~�T -
al
ulus / LKT�~� and ��~�Q-
al
ulus/ LKQ�~� (se
tion 5), and as further restri
tions the ��-
al
ulus (se
tion 2) and the �~�-
al
ulus (se
tion 6). At allthese levels, the duality of
all-by-name and
all-by-value isgoverned by the symmetry of the �-terms and the ~�-terms.The situation is summarized in the following table. In the

table, - shows a sour
e-to-target dire
tion (
f. proposition5.3), while$ indi
ates stronger one-to-one
orresponden
es(
f. proposition 2.2 and 6.1). It would be interesting to
om-plete this pi
ture by adding more strong
orresponden
es$. One
ould in parti
ular show that CBV ��-
al
ulus (forwhi
h let arrives naturally) relates to CBV ��~�-
al
ulus.One
ould also
onsider
all-by-name �-
al
ulus plus let,whi
h has CBN ��~�-
al
ulus as a target. In su
h a
al
ulus,one
ould delay some substitutions, as in let x = yM1 inM2(or ��:hyjv1 � ~�x:hv2j�ii), i.e. we
ould for
e some sharingof sub
omputations.Logi
 Syntax Evaluation LanguageLK�~� ��~� 8<: NDCBNCBVLKT�~� ��~�T CBNLKQ�~� ��~�Q CBV - CBV ��LKT� �� CBN $ CBN ��LKQ~� �~� CBV $ �~�� Non-determinism. In [1℄ and [21℄, the non-determinism of
lassi
al logi
 is en
apsulated in
riti
al pairs similar to the(�)�(~�) pair. But no expli
it
onne
tion with
all-by-name/
all-by-value appears in those works.� Semanti
s. It is fairly
lear that our syntax LK�~� withthe CBN (CBV) ma
hine
an be interpreted in Selinger's
ontrol (
o-
ontrol)
ategories: the
ategori
al
onstru
tioninterpreting ! (�) is an exponent (a
o-exponent), and �(!) is a weak
o-exponent (a weak exponent). It should beinteresting and useful to work out the details of this inter-pretation.� Dynami
s. Laurent has investigated (CBN) proof-nets foran extended polarized linear logi
 that
losely
orresponds to��-
al
ulus [14℄. These proof-nets enjoy a simple
orre
tion
riterion. This suggests that a proof-net representation ofLK�~� is possible.� Games. We intend to develop a game interpretation ofour
al
uli. A game-theoreti
 analysis of
all-by-value hasbeen given by Honda and Yoshida [12℄. One
ould hope tosharpen the analysis so as to obtain a game-theoreti
 readingof the duality of
omputation.� Expressivity. We have used the di�eren
e
onne
tive ina purely formal way. It would be interesting to study this
onne
tive for its own sake and to get insights into its
om-putational meaning. Crolard has initiated this kind of inves-tigation [2℄. One way of seeing the di�eren
e
onne
tive isthat it allows us to view
ontexts as values: v�e is both a
on-text whose hole has a fun
tion type A! B (as explained inthe introdu
tion) and a pair of values of type B�A (viewedas a produ
t type). Under the latter interpretation, a
ut ofthe form h�(x;�):
jei appears as a destru
tive let: \evaluatee to a pair, and bind the two
omponents of the pair to xand �, respe
tively".
11. REFERENCES

[1℄ F. Barbanera and S. Berardi, A symmetri
 �-
al
ulusfor \
lassi
al" program extra
tion, Information andComputation 125, 103-117 (1996).[2℄ Tristan Crolard, Typage des
oroutines en logiquesoustra
tive, Pro
. Journ�ees Fran
ophones desLangages Appli
atifs, Colle
tion Dida
tique, INRIA(http://pauilla
.inria.fr/j
a99/index.html) (1999).[3℄ P.-L. Curien, H. Herbelin, Computing with Abstra
tB�ohm Trees, in the Pro
eedings of the 3rd FujiInternational Symposium on Fun
tional and Logi
Programming, Eds M. Sato & Y. Toyama, WorldS
ienti�
, 20-39 (1998).[4℄ V. Danos, Sequent Cal
ulus and Continuation PassingStyle Compilation. To appear in the Pro
eedings ofthe 11th Congress of Logi
, Methodology andPhilosophy of S
ien
e, held in Cra
ow, Kluwer (1999).[5℄ V. Danos, J.-B. Joinet, H. S
hellinx, LKQ and LKT:sequent
al
uli for se
ond order logi
 based upon duallinear de
ompositions of
lassi
al impli
ation, inAdvan
es in Linear Logi
, 211-224, CambridgeUniversity Press (1995).[6℄ V. Danos, J.-B. Joinet, H. S
hellinx, A NewDe
onstru
tive Logi
: Linear Logi
, in The Journal ofSymboli
 Logi
 62(3), 755-807 (1997).[7℄ V. Danos, L. Regnier, Ma
hina ex deo, ou en
orequelque
hose �a dire sur la ma
hine de Krivine,unpublished (1990).[8℄ G. Gentzen, Investigations into logi
al dedu
tion(1935), e.g. in Gentzen
olle
ted works, Ed M. E.Szabo, North Holland, 68� (1969).[9℄ J.-Y. Girard, On the unity of logi
, Annals of Pureand Applied Logi
 59, 201-217 (1993).[10℄ Ph. de Groote, On the relation between the��-
al
ulus and the synta
ti
 theory of
ontrol,Le
ture Notes in Computer S
ien
e 822 (1994).[11℄ H. Herbelin, S�equents qu'on
al
ule, Th�ese deDo
torat, Universit�e Paris 7 (1995).[12℄ K. Honda and N.Yoshida, Game-theoreti
 analysis of
all-by-value
omputation, Pro
. ICALP 97, Le
tureNotes in Computer S
ien
e 1256, Springer (1997).[13℄ M. Hofmann, T. Strei
her, Continuation models areuniversal for ��-
al
ulus, Pro
. Logi
 in ComputerS
ien
e (1997).[14℄ O. Laurent, Polarized proof-nets and ��-
al
ulus,draft (1999).[15℄ C. H. L. Ong, C. A. Stewart, A Curry-HowardFoundation for fun
tional
omputation with
ontrol,Pro
eedings of ACM SIGPLAN-SIGACT Symposiumon Prin
iple of Programming Languages, Paris, ACMPress, January (1997).

[16℄ I. Ogata, Constru
tive Classi
al Logi
 asCPS-
al
ulus, to appear in IJFCS (InternationalJournal of Foundations of Fun
tional Programming).[17℄ M. Parigot, ��-
al
ulus: An algorithmi
interpretation of
lassi
al natural dedu
tion, Pro
. ofthe International Conferen
e on Logi
 Programmingand Automated Reasoning, St. Petersburg, Le
tureNotes in Computer S
ien
e 624 (1992).[18℄ G. D. Plotkin, Call-by-name,
all-by-value and thelambda-
al
ulus, Theoreti
al Computer S
ien
e 1,125-159 (1975).[19℄ A. Sabry, M. Felleisen, Reasoning about programs in
ontinuation-passing style, Lisp and Symboli
Computation 6(3/4), 287-358 (1993).[20℄ P. Selinger, Control
ategories and duality: on the
ategori
al semanti
s of the ��-
al
ulus, draft (1999).[21℄ C. Urban, G. Bierman, Strong normalization of
ut-elimination in
lassi
al logi
, Pro
. Typed LambdaCal
ulus and Appli
ations, Le
ture Notes inComputer S
ien
e (1999).
APPENDIX

A. THE ��-CALCULUSThe ��-
al
ulus [17℄ is an extension of the �-
al
ulus thatdeals with multiple
on
lusions and therefore allows us toa

ount for
lassi
al reasoning. Under the Curry-Howardisomorphism, it
an be seen as a �-
al
ulus with
ontroloperators, and is indeed equivalent to, say, Felleisen's �C-
al
ulus [10℄. For the sake of
onsisten
y with our frame-work, we
onsider two synta
ti

ategories: the terms andthe
ommands, and, a

ordingly, two kinds of typing judge-ments:Syntax: M ::= x jjMN jj �x:M jj ��:

 ::= [�℄MTyping judgements:� `M : A j�
 : (� ` �)Typing rules: �; x : A ` x : A j�� `M : A! B j� � ` N : A j�� `MN : B j��; x : A `M : B j�� ` �x:M : A! B j�
 : (� ` � : B;�)� ` ��:
 : B j�

� `M : A j� : A;�[�℄M : (� ` � : A;�)Redu
tion rules (in
all-by-name):(�x:M)N ! M [x N ℄(��:
)N ! ��:
[� (�;N)℄[�℄(��:
) !
[� �℄where substitution is the usual (
apture-avoiding) substitu-tion in the �rst rule and the third rule, while in the se
-ond rule one repla
es every subterm of
 of the form [�℄Mby [�℄(MN). There is an additional rule, similar to the�-redu
tion, whi
h we do not in
lude as a redu
tion rule(rather, we treat it impli
itly as an expansion rule):��:[�℄M = M (� not free in M)
B. LINEAR DECORATION OF LKT�~� ANDLKQ�~�In this se
tion, we
omplete the work of se
tion 5 by pro-viding translations of LKT�~� and LKQ�~� into linear logi
.Arrow types are translated as in [5℄.The translation of LKT�~� into linear logi
 is de�ned as fol-lows on formulas:XT = X (A! B)T = !?AT !?BT :Su
h a translation whi
h
onsists only in inserting modalitiesat some pla
es without any other modi�
ation is
alled alinear de
oration.Proposition B.1.� LKT�~�` �� LKT�~�` V : A j�� ; e : A LKT�~�` �� jE : A LKT�~�` �

9>>>>>>>=>>>>>>>; =) 8>>>>>><>>>>>>: !?�T LL̀?�T!?�T LL̀?AT ; ?�T!?�T ; AT LL̀?�T!?�T ; !?AT LL̀?�TThe linear de
oration for LKQ�~� is de�ned as follows:XQ = X (A! B)Q = !AQ !?!BQ :Proposition B.2.� LKQ�~�` �� LKQ�~�` v : A ; �� LKQ�~�` V : A j�� jE : A LKQ�~�` �
9>>>>>>>=>>>>>>>; =) 8>>>>>><>>>>>>: !�Q LL̀?!�Q!�Q LL̀ AQ; ?!�Q!�Q LL̀?!AQ; ?!�Q!�Q; !AQ LL̀?!�Q

