
The Duality of Computation

Pierre-Louis Curien (CNRS and University Paris 7)� Hugo Herbelin (INRIA-Rocquencourt)y
ABSTRACTWe present the ��~�-alulus, a syntax for �-alulus + on-trol operators exhibiting symmetries suh as program/on-text and all-by-name/all-by-value. This alulus is derivedfrom impliational Gentzen's sequent alulus LK, a keylassial logial system in proof theory. Under the Curry-Howard orrespondene between proofs and programs, wean see LK, or more preisely a formulation alled LK�~�,as a syntax-direted system of simple types for ��~�-alulus.For ��~�-alulus, hoosing a all-by-name or all-by-valuedisipline for redution amounts to hoosing one of the twopossible symmetri orientations of a ritial pair. Our anal-ysis leads us to revisit the question of what is a naturalsyntax for all-by-value funtional omputation. We de�nea translation of ��-alulus into ��~�-alulus and two dualtranslations bak to �-alulus, and we reover known CPStranslations by omposing these translations.
1. INTRODUCTIONProgramming languages present impliit symmetries suhas input/output, or program/ontext. Less obviously { asshown reently by Selinger in a ategorial setting [20℄ {, thepiture an be extended to evaluation mehanisms: thereexists a symmetry between all-by-name and all-by-value.On the logial side, the best �t for evidening symmetries issequent alulus (based on left and right introdution rules).But the orrespondene between programs and proofs is tra-ditionally explained through natural dedution (based onright introdution and right elimination rules), impliationelimination (also alled Modus Ponens) orresponding toproedure appliation. We believe that this tradition is ingood part misleading. In this paper, we present a sequent�E-mail: Pierre-Louis.Curien�pps.jussieu.fryE-mail: Hugo.Herbelin�inria.fr

alulus style syntax that exhibits the above symmetries ina preise, (and { we believe { ompelling) way.A key step in this program was already aomplished in[11℄, where it was shown that simply-typed �-terms (or ��-terms) in (all-by-name) normal form are in bijetive orre-spondene with ut-free sequent alulus proofs in a suitablerestrition of Gentzen's LJ (or LK) [8℄. Danos, Joinet, andShellinx identi�ed the same restrition of LK { and alledit LKT { as part of a thorough investigation of linear logienodings of lassial proofs [5, 6℄. Having gained throughthis orrespondene the \naturalness" that was making thenatural dedution usually preferred in pratie, there wasno reason any longer not to systematially study �-alulusthrough sequent alulus rather than through the traditionalCurry-Howard orrespondene with natural dedution. Se-quent alulus is far more well-behaved than natural de-dution: it enjoys the subformula property, and destrutionrules { uts { are well haraterized in ontrast with theelimination rules of natural dedution whih superimposeboth a onstrution and a destrution operation: the appli-ation is a onstrutor in a term xM , but is destrutive ina term (�x:M)N .The leading goal at the root of the present work was to on-eive a \sequent alulus" version of all-by-value �-alulusand ��-alulus. Our starting point was the observationthat the all-by-value disipline manipulates input muh inthe same way as (the lassial extension of) �-alulus ma-nipulates output. Computing MN in all-by-value an beviewed as �lling the hole (hene an input) of the ontextM [℄ with the result of the evaluation of N . So the fous ison ontexts waiting for values { a situation that sounds dualto that of (output) values being passed to ontinuations.This leads us to a syntax with three di�erent syntati at-egories: ontexts, terms, and ommands1. Commands arepairs onsisting of a term and a ontext, they represent alosed system ontaining both the program and its environ-ment. Correspondingly, we type these di�erent ategorieswith three kinds of sequents. The usual sequents � ` �type ommands, while the sequents typing terms (ontexts)1Danos has also reognized the relevane of these three ate-gories in [4℄ where he extends the work of Ogata [16℄ on therelation between LKQ and all-by-value CPS-translations(LKQ is the other natural restrition of LK onsidered in[5, 6℄).

are of the form � ` A j� (� jA ` �). The symbol \j"serves to single out a distinguished onlusion/output (hy-pothesis/input), whih stands for \where the omputationwill ontinue" (\where it happened before").In the rest of this introdution, we o�er as a prologue asimple justi�ation of the relevane of sequent alulus tothe omputational study of the �-alulus. Call-by-nameevaluation in the �-alulus an be spei�ed by the followinginferene rule: M !� �x:PMN ! P [x N ℄ :This reursive spei�ation may be implementedwith a stakas follows: (MN ; S) ! (M ; N :: S)(�x:P ; N :: S) ! (P [x N ℄ ; S)This simple devie is alled Krivine abstrat mahine. Itan be rephrased using ontexts instead of staks:(MN ; E) ! (M ; E[[℄N ℄)(�x:P ; E[[℄N ℄) ! (P [x N ℄ ; E)(Reall that a ontext is a �-term with a hole, denoted [℄,whih an be �lled with a term, or another ontext: e.g.,E[[℄N ℄ is the ontext obtained by �lling the hole of E withthe ontext [℄N .) Consider the evolution of the types of theholes in the ontexts during the exeution of the rules. IfN has type A and if the hole of E has type B, then thehole of E[[℄N ℄ has type A ! B. This orresponds to aleft introdution of impliation (note that holes in ontextsorrespond to inputs). Then the seond rule of Krivine ab-strat mahine reads as a ut between an impliation whihhas been introdued on the right and an impliation whihhas been introdued on the left. We are here in the worldof sequent aluli, not of natural dedution.In setion 2, we reall the seond author's sequent alulusanalysis of (all-by-name) ��-alulus. In setion 3, we dis-uss how to add all-by-value to the piture. This leads usin setion 4 to ��~�-alulus and its typing system LK�~�,a logial system for lassial logi (limited to the implia-tion onnetive) with the three kinds of sequents introduedabove. In partiular, we exhibit the symmetry between theall-by-name and all-by-value disiplines, by means of dualorientations of a single ritial pair. In setion 5, we an-alyze two subsyntaxes: the ��~�T -alulus and the ��~�Q-alulus, and the orresponding sequent aluli LKT�~� andLKQ�~�. These aluli orrespond to LKT and LKQ; theirrelation with linear logi is explained in appendix B. Ourtranslation of the ��-alulus arrives in the intersetion ofthese subsyntaxes, and the target redution stays in ��~�T -alulus (��~�Q-alulus) in the all-by-name (all-by-value)disipline.Setion 6 is a \reverse engineering" exerise. Guided bythe goal of translating all-by-value normal forms into ��~�Qnormal forms, we revisit soure all-by-value evaluation andsyntax: we work on an extension of the �-alulus with alet onstrut, and then on a restrition of this extensionwhih in our opinion is the all-by-value ounterpart of the

�-alulus.In setion 7, we omplete the duality by adding the on-netive \-" (the di�erene). This allows us to exhibit fullythe duality between terms and ontexts. In setion 8, welink our analysis to both the lassial and the more reentworks on ontinuation semantis. Finally, in setion 9, weomplete the desription of ut-elimination in LK�~�. Weonlude in setion 10.
2. CALL-BY-NAME ��-CALCULUS IN SE-

QUENT CALCULUS STYLEIn this setion we present (a variant of) the ��-alulus of[11℄. This alulus is to sequent alulus what ��-alulusis to natural dedution. (The syntax and the typing rules ofsimply-typed ��-alulus are realled in appendix A.) Thesyntax (as well as those of the subsequent setions) embodiesthe three syntati ategories disussed in the introdution:Commands ::= hvjEiContexts E ::= � jj v �ETerms v ::= x jj ��: jj �x:vIts typing system is a sequent alulus based on judgementsof the following form: : (� ` �) � jE : A ` � � ` v : A j�and typing rules are given below:� j� : A ` � : A;��; x : A ` x : A j�� ` v : A j� � jE : B ` �� j (v �E) : A! B ` � : (� ` � : B ; �)� ` ��: : B j��; x : A ` v : B j�� ` �x:v : A! B j�� ` v : A j� � jE : A ` �hvjEi : (� ` �)The notations hvjEi an be read as some ontext E[℄ �lledwith v; when E = �, it beomes just another notation forthe naming onstrution [�℄v in ��-alulus.Terms an be redued by the following redutions rules:(!) h�x:v1j(v2 �E)i ! hv1[x v2℄jEi(�) h��:jEi ! [� E℄Normal forms are those terms where either v = x or (E = �and v 6= ��:) in subexpressions of the form hvjEi.

Remark 2.1. Our treatment of ��-alulus does not fol-low any longer the \ut=redex" paradigm of sequent alulusas in [11℄. Another treatment ould have been to add the two(ontration) rules �; x : A jE : A ` �hxjEi : (�; x : A ` �)� ` V : B j � : B ; � (V = x or V = �x:v)hV j�i : (� ` � : B ; �)and restrit the ut rule to the other ombinations of v; E.Then we have the \ut=redex" paradigm of sequent alulus,but another annoying phenomenon shows up: there are twoderivations of hxj�i. This an in turn be solved by removingthe introdution rule for x but then hvjEi does not any longerinlude the hxjEi onstrution whih must be added expliitlyin the grammar. No perfet world.Until setion 9, we ignore the expliit proess of substitution,i.e., as in natural dedution, we onsider that the replae-ment is atually arried out ompletely in a single step. Thismakes it easier to onvey our main observations and results.We note that any normal ��-term v has the following form:v ::= x jj ��: jj �x:v ::= h�x:vj�i jj hxjv1 � : : : vn � �iWe now de�ne two translations N and n of ��-alulus intothe ��-alulus. The translation N preserves normal forms,while the translation n is ompositional, i.e., preserves thestruture of (appliative) terms.The translation N involves a parameterization by a ontext(a trik that goes bak to Plotkin's so-alled olon transla-tion [18℄):xN = x(�x:M)N = �x:MN(��:)N = ��:N([�℄M)N =MN�(MN)NE =MNNN �EV NE = hV N jEi where V = x jj �x:M jj ��:MProposition 2.2. The translation N maps normal termsto normal terms.Proof. A ��-normal form is either a variable x, or an ab-stration �x:M (��:) where M ()is normal, or an expres-sion [�℄M where M is normal and not a � abstration, or anexpression xM1 : : :Mn. The latter two ases orrespond tothe two situations in whih a \ut" hvjEi is not a redex.Notie that the term ��:[�℄(: : : (xM1) : : :Mk) and its trans-lation ��:hxj(MN1 � (: : : (MNk � �) : : :))i are essentially thesame terms, up to a rearrangement. In the translation N ,appliative terms are turned the other way round: a vari-able applied to a �rst argument then to a seond and so

on beomes (an enoding of) a variable applied to a list ofarguments.With simple adjustments (onsisting in restriting inessen-tially the syntax of the ��-alulus and in atomizing the (�)-rule), the statement of proposition 2.2 an be improved: itis essentially an isomorphism, i.e., a bijetion that preservesredution step by step both ways. Consider the followingrestrition of the syntax of the ��-alulus that disallowsappliations in ontexts of the form �x:[℄ and M [℄ (this isno real restrition sine any appliationMN an be replaedby an expansion ��:[�℄(MN), f. appendix A):v ::= x jj �x:v jj ��: ::= [�℄aa ::= v jj avAs for redution, we deompose the (�) rule of ��-alulusin smaller steps aording to the form of the ontext:(�app) h��:jv �Ei ! h��:([� v � �℄)jEi(�var) h��:j�i ! [� �℄With these adjustments, proposition 2.2 an be restated as:The translation N is an isomorphism: it is bije-tive, maps normal forms to normal forms, andpreserves redutions step by step.The translation n whih we de�ne now is ompositional butdoes not preserve normal forms. This sort of translationis quite well known, sine it amounts to translate naturaldedution into sequent alulus.xn = x(�x:M)n = �x:Mn(��:)n = ��:vn([�℄M)n = hMnj�i(MN)n = ��:hMnjNn � �iThe translation n maps a normal form to its image by theprevious translation modulo the use of the rule (�) only(\administrative redexes"). Thanks to the insertion of �at eah appliation node, the translation simulates the re-dution rule of ��-alulus without need to re�ne the (�)rule.Proposition 2.3. The translation n is a homomorphismfrom ��-terms to ��-terms, i.e., it preserves (all-by-name)redution. Moreover, for any ��-term M , Mn redues byrepeated appliations of the rule (�) to MN .Proof. Preservation of redution is trivial. Note that thepreservation is even step to step: if v1 ! v2, then vn1 ! vn2 .The seond part of the statement is an easy onsequene ofthe following:(��:[�℄(xM1 : : :Mk)n !?��:hxj(Mn1 � (: : : (Mnk � �) : : :))i (k (�) steps)

Remark 2.4. Without logial nor omputational loss, onemay fore the body of a �-abstration to have the form ��:(expanding �x:v as �x:��:hvj�i when neessary). This ob-servation leads to a variant of the ��-alulus where the �-abstration is replaed by a double abstration �(x; �):, withthe following typing rule: : (�; x : A ` � : B;�)� ` �(x; �): : A! B j�.
3. CALL-BY-VALUE: INTRODUCING ~�Traditionally, one explains how to enode all-by-name inall-by-value by introduing expliit operators that freezethe evaluation of arguments. The same idea an be appliedto enode all-by-value on top of all-by-name, now freezingthe funtion until its argument is evaluated. The familiaronstrut let x = N in P an be understood in this way.Suppose that we want to ompute an appliation MN in aall-by-value disipline. A �rst step may onsist in writing(let x = N in Mx), with the intention that N should beevaluated before being passed to Mx, or equivalently thatthe appliation of M should be delayed until the argumentN is evaluated. With this aim, we introdue a new bindingoperator ~�, whih will turn out to be dual to �. In �rstapproximation, we enode (let x = N in P) as hN j~�x:P i.The orret enoding is atually��:hN j~�x:hP j�ii :The ~�-abstration allows us to turn (or freeze) the expressionP into a ontext waiting for the value of N . If P = Mx,then we get ��:hN j~�x:h��0:hM jx ��0ij�ii, whih redues by(�) to ��:hN j~�x:hM jx � �ii. What is the typing rule for ~�?First, if is a ommand, then ~�x: is a ontext (whih isdual to ��:). The typing rule is as follows: : (�; x : B ` �)� j ~�x: : B ` �One adds the following ut-elimination rule:(~�) hvj~�x:i ! [x v℄whih forms a ritial pair with the (�)-rule, in any om-mand of the form h��:1j~�x:2i. We impose that the (�)-rule has priority in suh a redex, yielding 1[� ~�x:2℄.The (ompositional) interpretation of the ��-alulus is nowrede�ned as follows:xv = x(MN)v = ��:hNv j~�x:hMvjx � �ii(�x:M)v = �x:Mv([�℄M)v = hMv j�i(��:)v = ��:vWe next show how the all-by-value redution is simulatedthrough this translation:((�x:M)N)v = ��:hNv j~�x:h�x:Mvjx � �ii!(!) ��:hNv j~�x:hMvj�ii!(~�) ��:hMv [x Nv℄j�i(N = x or �y:P)

The last unfreezing step is onditioned by the form of Nv:if N is a value in the sense of [18℄, i.e., is an abstrationor a variable, then the (~�)-redution an be applied. Oth-erwise, Nv begins with a �, whih prevents an immediateappliation of (~�) and fores the evaluation of Nv .A �nal remark before we an start to apitalize our analy-sis of all-by-name and all-by-value is that the translationwe just de�ned for all-by-value works as well as it standsfor all-by-name, provided one hanges the priorities in theredution system. If one now applies ~� as early as possible,then Mv redues by repeated use of the ~� rule to Mn. Wede�ne the all-by-name (all-by-value) disipline as the ap-pliation of the three rewrite rules (!), (�), and (~�) givingpriority to (~�) (to (�)). Then, in all-by-name, Mn is justan optimized version of the translation Mv. This justi�esto use a neutral symbol, say y, instead of v and proposition2.3 an now be rephrased as follows:The translation y is a homomorphism from ��-terms to ��-terms for all-by-name redution.Moreover, for any ��-term M , Mn redues byrepeated appliations of the rules (~�) and (�) toMN .This suggests to onsider a all-by-value ounterpart V totranslation N and to proposition 2.2. But this raises thequestion of what should atually be onsidered as all-by-value normal forms in the �-alulus. We defer this analysisuntil setion 6.
4. THE SYSTEM LK�~�Colleting together the ingredients of the last two setions,we arrive at the ��~�-alulus whose syntax is ::= hvjeiv ::= x jj ��: jj �x:ve ::= � jj ~�x: jj v � eand evaluation rules are:(!) h�x:v1jv2 � ei ! hv2j~�x:hv1jeii(�) h��:jei ! [� e℄(~�) hvj~�x:i ! [x v℄Observe we have not supposed yet any ommitments forall-by-name or all-by-value redution. This depends onthe order of the last two rules:Call-by-value onsists in giving priority to the(�)-redexes (whih serve to enode the terms,say, of the form MN), while all-by-name givespriority to the (~�)-redexes.The two disiplines are hereafter referred to as CBN redu-tion and CBV redution, respetively.At the typing level, we obtain LK�~� whose typing judge-ments are: : (� ` �)� ` v : A j�� j e : A ` �

and whose typing rules are:� ` v : A j� � j e : A ` �hvjei : (� ` �)� j� : A ` � : A;��; x : A ` x : A j� : (� ` � : B;�)� ` ��: : B j� : (�; x : A ` �)� j ~�x: : A ` �� ` v : A j� � j e : B ` �� j v � e : A! B ` ��; x : A ` v : B j�� ` �x:v : A! B j�A ��-term is translated into a ��~�-term as follows:xy = x(MN)y = ��:hNyj~�x:hMyjx � �ii(�x:M)y = �x:My([�℄M)y = hMyj�i(��:)y = ��:yand a judgement � ` M : A j� of the ��-alulus is trans-lated into a LK�~� judgement � LK�~�` My : A j�.Remark 4.1. The above formulation of the rule (!) isdi�erent from that of setion 2, but is losely related to it:the former (!) is just the appliation of the new (!) im-mediately followed by (~�), whih is always possible in CBNredution, and is possible in CBV redution when v2 is avariable or an abstration, as required by the all-by-valuedisipline of the �-alulus. (See also the deomposition ofall-by-value � redution in two steps, using an expliit let,in setion 6.) The new formulation of the rule presents someredundany with the translation y: the old version of (!)works as well as the new one as far as the redution of someMy is onerned, and the simpler translation n would workas well as the translation y even in all-by-value providedone takes the new version of (!). But in the larger ontextof the full LK�~�, the new rule is the only one to make sensein CBV, while the translation y has been designed in suha way that its image (unlike that of n) lies in the interse-tion of two natural subsystems of LK�~�, whih we introduenext.

5. TWO WELL-BEHAVED SUBSYNTAXESIn this setion, we de�ne subaluli of ��~�-alulus that weall ��~�T -alulus and ��~�Q-alulus beause their typingsystems orrespond to the systems LKT and LKQ of [5, 6℄.Their de�nition is guided by the requirement of stability un-der all-by-name and all-by-value evaluation, respetively(propositions 5.1 and 5.3).Syntax of ��~�T Judgements of LKT�~� ::= hvjeiv ::= x jj ��: jj �x:vE ::= � jj v �Ee ::= ~�x: jj E : (� ` �)� ` v : A j�� ; E : A ` �� j e : A ` �The ontexts E are alled appliative ontexts. The typingrules are the same as those of LK�~� for hvjei, ��:, ~�x:, x,and �x:v. The other rules are as follows:� ; � : A ` � : A;�� ` v : A j� � ; E : B ` �� ; (v �E) : A! B ` �� ; E : A ` �� jE : A ` �In the judgement � ; E : A ` �, the sign \;" not only de-lineates a distinguished hypothesis, but also puts linearityonstraints on this hypothesis: it is a stoup, in the termi-nology of Girard [9℄. Note that impliit ontrations arepresent in the left impliation rule. On the other hand, the~� mehanism is the only way to swith from a distinguishedhypothesis to another hypothesis. The syntati restritionson LKT�~� say that this an be done only at the prie ofturning the \;" into a \j". Putting these observations to-gether, we see that the rules of LKT�~� guarantee that aformula in the stoup is never subjet to a ontration rule.For the same reasons, it annot be subjet to a weakeningrule (weakening outside the stoup is impliit in the typingrule for �).Proposition 5.1. For any ��-term M , My and any ofits CBN reduts in ��~�-alulus lies in ��~�T -alulus.Remark 5.2. The typing system onsidered in setion 2lives within LKT�~�. Therefore, we shall all it LKT�. Inretrospet, in that setion, we should have written � ; E :A ` � as judgement instead of � jE : A ` �. Notie alsothat with n or N instead of y, one has a sharpening: thereduts of the translation lie all in the ��-alulus, in eitherase.We now turn to the all-by-value restrition.

Syntax of ��~�Q Judgements of LKQ�~� ::= hvjeiV ::= x jj �x:vv ::= ��: jj Ve ::= � jj ~�x: jj V � e : (� ` �)� ` V : A ; �� ` v : A j�� j e : A ` �The terms V are alled values. The typing rules are thesame as in LK�~� for hvjei, ��:, ~�x:, �, and �x:v. Theother rules are as follows:�; x : A ` x : A ; �� ` V : A ; � � j e : B ` �� j (V � e) : A! B ` ��; x : A ` V : B j�� ` �x:V : A ! B ; �� ` V : A ; �� ` V : A j�Proposition 5.3. For any ��-term M , My and any ofits CBV reduts in ��~�-alulus lies in ��~�Q-alulus.Hene, for any ��-term M , My stands in the intersetionof LKT�~�-alulus and ��~�Q-alulus (it uses only V 's andE's, in our notation), and its reduts stay in the relevantsubsyntax one an evaluation disipline has been �xed.The systems ��~�T -alulus and ��~�Q-alulus are also well-behaved without referene to the ��-alulus. It is easy tohek that ��~�T -alulus (��~�Q-alulus) is stable underCBN (CBV) redution and that normal ommands lies in��-alulus (�~�-alulus, de�ned in next setion).
6. WHAT IS CBV �-CALCULUS?In setion 2, we arrived at a perfet orrespondene be-tween all-by-name ��-normal forms and (all-by-name) ��-normal forms. We wish to reah the same goal for all-by-value normal forms. Moreover, for the purposes of duality,we wish to eliminate the need of the �-operation to enodeall-by-value omputation, sine we did not need the ~� oper-ator to enode all-by-name omputation. Reall Plotkin'sde�nition of all-by-value redution:(�V) (�x:M)V ! M [x V ℄(V variable or abstration) :A typial (�V) normal form is thus (�x:M)(yN), whosetranslation��:h��:hNyj~�z:hyjz � �iij~�t:h�x:Myjt � �iiontains a (!) redex. A simple way out of this �rst obstaleis to extend the syntax of the �-alulus with a let onstrut:M ::= x jj �x:M jj MN jj let x = N in M

and to replae (�V) by the following redution rules:(let) (�x:M)N ! (let x = N in M)(a appliation or let expression)(let�) (let x = V in M) ! M [x V ℄(V variable or abstration)Then we extend the translation in the following way:(let x = N in M)y = ��:hNyj~�x:hMyj�ii :But onsider now a term of the form (�xx0:M)(yN)V , whihis normal for �V , and whose (let) + (let�) normal form is(let x = yN in �x0:M)V . We have:((let x = yN in �x0:M)V)y=��:hV yj~�z:h��0:h(yN)yj~�x:h�x0:Myj�0iijz � �ii#(~�)��:h��0:h(yN)yj~�x:h�x0:Myj�0iijV y � �i#(�)��:h(yN)yj~�x:h�x0:MyjV y � �ii#(!)��:h(yN)yj~�x:hMy[x0 V y℄j�ii=(let x = yN in My[x0 V y℄)yHene the translation is able to redue the \hidden" redex(�x0:M)V . To ure this mismath, we introdue a furtherrule in the soure language:(letapp) (let x = a in M)N ! (let x = a in (MN))(x not free in N) :This rule allows us to redue (�xx0:M)(yN)V as follows:(�xx0:M)(yN)V ! (let x = yN in �x0:M)V! let x = yN in (�x0:M)V! let x = yN in M [x0 V ℄ :Consider now a term of the form (�x:M)((�y:V)(zN)) (ynot free in M), whih is normal for �V , and whose (let) +(let�) normal form is let x = (let y = zN in V) in M . Wehave: (let x = (let y = zN in V) in M)y=��:h��0:h(zN)yj~�y:hV yj�0iij~�x:hMyj�ii#(�)��:h(zN)yj~�y:hV yj~�x:hMyj�iii#(~�)��:h(zN)yj~�y:hMy[x V y℄j�ii=(let y = zN in M [x V ℄)yHere again the translation is able to redue the \hidden"redex (let x = V in M). This leads us to introdue anotherrule: (let let) let x = (let y = N in M) in P! let y = N in (let x =M in P)(y not free in P)It is easily heked that the (let)+(let�)+(letapp)+(let let)normal forms are as follows:M ::= x jj �x:M jj let x = xMM1 : : :Mn in M jj xMM1 : : :Mn

It is possible at this stage to write a translation V from thisset of normal forms to ��~�-terms in all-by-value normalform. But we would have to use � in the translation, typi-ally in a term like x(yM), for whih one has to write(x(yM))V� = hxj��:hyjMV � �i � �i :In order to avoid plaing appliative subterms in the on-texts, and hene in order to ahieve our seond goal of \get-ting rid of �", we introdue a last rule:(letexp) Ma! (let x = a in Mx)(a appliation or let expression)The (let)+(let�)+(letapp)+(let let)+(letexp) normal formsare as follows:V ::= x jj �x:MM ::= V jj let x = yV V1 : : : Vn in M jj xV V1 : : : VnWe are now ready for our all-by-value normal form to nor-mal form translation, whih is de�ned below. Note the useof the double abstration (f. remark 2.4 { the point is thatwe need � only under a �):xV = x(�x:M)V = �(x;�):MV�V V� = hV V j�i(xV V1 : : : Vn)V� = hxjV V � V V1 � : : : � V Vn � �i(let x = yV V1 : : : Vn in M)V�= hyjV V � V V1 � : : : � V Vn � ~�x:MV� iIn this translation, there is no �. This suggests to onsidera alulus symmetri to the ��-alulus of setion 2, whihwe therefore all the �~�-alulus. At the typing level, weall the system LKQ~�, to stress that it is a subsystem ofLKQ�~� (just as LKT� is a subsystem of LKT�~�, f. remark5.2). Syntax of �� (LKT�) Syntax of �~� (LKQ~�) ::= hvjEiv ::= x jj �(x;�): jj ��:E ::= � jj v �E ::= hV jeiV ::= x jj �(x; �):e ::= � jj ~�x: jj V � eThe rewrite rules for LKQ~� are (~�) and the following newinarnation of the rule (!):h�(x;�):jV � ei ! [x V; � e℄Reading this bak in �-alulus style, we arrive at the fol-lowing syntax, whih we all �~�-alulus: ::= [�℄(V V1 : : : Vn) jj let x = V V1 : : : Vn in V ::= x jj �(x;�):where usual �x:V an be seen as a shortut for �(x; �):[�℄V(� not free in V). We onsider the following redution rulesfor �~�-alulus:(�1V) let x = (�(x;�):1)V1 : : : Vn in 2! 1[x V1℄[[�℄a let x = aV2 : : : Vn in 2℄(�2V) [�℄((�(x; �):)V1 : : : Vn)! [x V1℄[[�℄a [�℄(aV2 : : : Vn)℄(let�) let x = V in ! [x V ℄

where [[�℄a e℄ is the term obtained by replaing ev-ery ourrene of [�℄(V V1 : : : Vn) in by e where a is re-plaed by (V V1 : : : Vn). Remark that (�V) derives diretlyfrom (�2V)(seeing �x:V as a shortut for �(x;�):[�℄V). Thetranslation V is straightforwardly adapted to �~�-terms, andde�nes in fat a bijetion between the two syntaxes:xV = x(�(x;�):)V = �(x;�):V([�℄(V V1 : : : Vn))V = hV V jV V1 � : : : � V Vn � �i(let x = V V1 : : : Vn in)V = hV V jV V1 � : : : � V Vn � ~�x:V iWe an now state the CBV ounterpart of proposition 2.2.Proposition 6.1. The translation V is an isomorphismfrom �~�-terms to �~�-terms.Remark 6.2. In [19℄, Sabry and Felleisen haraterizedthe theory indued on �-alulus by the all-by-value CPStranslation as the theory indued by the following two equa-tions in addition to (�V):(�lift) E[(�x:M)Q℄ = (�x:E[M ℄)P)(E ::= [℄ jj EN jj (�x:P)E)(�at) xV1V2 = (let y = xV1 in yV2)Our rules (letapp) and (let let) orrespond exatly to (�lift)(ases EN and (�x:P)E, respetively). Note that the other(let) rules are transparent from the point of view of the �-alulus (without let). The rule (�at), interpreted from rightto left, orresponds to the following �-like equation2:~�x:hxjei = E (x not free in e)Hene Sabry and Felleisen's analysis of all-by-value �-alu-lus agrees with ours. What is new here is the sequent alulusperspetive whih among others suggests us the hoie of afuntional syntax (the �~�-terms).
7. COMPLETION OF THE DUALITYIn order to dualize terms and ontexts, we introdue a on-netive dual to impliation: the di�erene onnetive, de-noted \-". The syntax of ��~�-alulus is extended as follows(we still all the extension ��~�-alulus): ::= hvjeiv ::= x jj ��: jj �x:v jj e � ve ::= � jj ~�x: jj v � e jj ��:eWe add the following omputation rule:(�) h(e2 � v)j��:e1i ! hvje1[� e2℄iand the following typing rules to LK�~�::� j e : B ` �� j ��:e : B �A ` �2This equation is dual to the equation ��:[�℄M =M (� notfree in M) in ��-alulus (f. appendix A).

� j e : A ` � � ` v : B j�� ` (e � v) : B �A j�We de�ne a duality of ��~�-alulus into itself whih worksas follows at the type level:XÆ = X(A! B)Æ = BÆ �AÆ(B �A)Æ = AÆ ! BÆThe translations Æ, vÆ, and eÆ of ommands, terms, andontexts are de�ned by reursively applying the followingtable of duality:x � �� ~�x e � v v � e �x ��� x ~�x �� v � e e � v �� �xProposition 7.1. In LK�~�, we have: : (� ` �)� ` v : A j�� j e : A ` � 9=;, 8<: Æ : (�Æ ` �Æ)�Æ j vÆ : AÆ ` �Æ�Æ ` eÆ : AÆ j�ÆOne an extend the de�nition of ��~�T -alulus and ��~�Q-alulus in suh a way that the above proposition restritsand re�nes to a duality between ��~�T -alulus and ��~�Q-alulus. We just give the extended syntax of ��~�T -alulusand ��~�Q-alulus and leave the rest to the reader:��~�T -alulus ��~�Q-alulus ::= hvjeiv ::= x jj ��: jj �x:v jj E � vE ::= � jj v �E jj ��:ee ::= ~�x: jj E ::= hvjeiV ::= x jj �x: jj e � Vv ::= ��: jj Ve ::= � jj ~�x: jj v � e jj ��:e
8. CPS TRANSLATIONSIn this setion, R stands for a �xed (arbitrary) type on-stant. We de�ne a translation of LK�~� types into intuition-isti types (i.e., the types of the simply-typed �-alulus,written using the mathematial notation where BA meansthe spae of funtions from A to B) as follows:X/ = X(A! B)/ = RA/�RB/(B �A)/ = B/ �RA/Note that if we read R as \false", then the image of thetranslation of A ! B (resp. B � A) reads as lassiallyequivalent to A ! B (resp. B � A). We next de�ne atranslation of LK�~�-terms to �-terms as follows:hvjei/ = v/e/�/ = �x/ = �k:kx(��:)/ = ��:/(~�x:)/ = �x:/(�x:v)/ = �k:k(�(x; �):v/�)(v � e)/ = �k:v/(�x:k(x; e/))(��:e)/ = �(y; �):e/y(e � v)/ = �k:v/(�y:k(y; e/))

Proposition 8.1. : (� LK�~�` �)� LK�~�` v : A j�� j e : A LK�~�` � 9>>>=>>>; =) 8>>><>>>: �/; R�/ �̀ / : R�/; R�/ �̀ v/ : RRA/�/; R�/ �̀ e/ : RA/Moreover, the translation validates the CBV disipline.Remark 8.2. When restrited to LKQ�~�, proposition 8.1an be sharpened in suh a way that the following additionalimpliation holds:� ` V : A ; � =) �/; R�/ �̀ V / : A/provided one translates x as x, �x:V as �(x; �):V /� and Vas �k:kV / when onsidered as a v.Note that the disymmetry of the �-alulus fores the all-by-value orientation of the (�)� (~�) ritial pair:h��:1j~�x:2i/ = (��:/1)(�x:/2)! /1[� �x:/2℄ :But the translation also takes are of the all-by-name dis-ipline, via duality. We set . = / Æ Æ. Then we have:X. = X(A! B). = B. �RA.(B �A). = R(B!A). = RA.�RB.Note that this time A. reads as lassially equivalent to:A[X :X℄. Note also that . an alternatively be takenas primitive and / de�ned as / = . Æ Æ.Proposition 8.3. : (� LK�~�` �)� LK�~�` v : A j�� j e : A LK�~�` � 9>>>=>>>; =) 8>>><>>>: R�. ;�. �̀ . : RR�. ;�. �̀ v. : RA.R�. ;�. �̀ e. : RRA.Moreover, the translation validates the CBN disipline.Combining . and / with the translation y from ��-terms, weobtain two CPS-translations to �-terms:(CBN) � ��̀ M : A j�) �.; R�. �̀ My . : RA.(CBV) � ��̀ M : A j�) �/; R�/ �̀ My/ : RRA/The two translations are known in the literature: My. is the(all-by-name) Lafont-Hofmann-Streiher translation [13℄ ofM , and My/ is the all-by-value Plotkin-Fisher translationof M [18℄. The following ditionary is useful to reognize

this: CBN CBVKA = AÆ/CA = RKA VA = A/KA = RVACA = RKAC�; K� �̀ MyÆ/ : CA V�; K� �̀ My/ : CAKA!B= (BÆ �AÆ)/= KB �CA VA!B= RVA�RVB�= VA ! CBHere, the letters V , K, and C stand for values, ontinu-ations, and omputations, respetively. Lafont-Hofmann-Streiher semantis maps omputations to omputations andinterprets a ontinuation of type A! B as a pair of a om-putation of typeA and a ontinuation of typeB (think of thestak N :: S of setion 1). Plotkin-Fisher all-by-value se-mantis maps values to omputations, and interprets a valueof type A! B as a funtion from values to omputations.
9. HEAD REDUCTION IN AN ABSTRACT

MACHINEIn this setion, we speify two kinds of (weak) head redu-tion mahine.The �rst mahine is quite standard and based on environ-ments. Instead of ommands hvjei, we manipulate expres-sions having the form hvf�1gjef�2gi, where �1 and �2 are(expliit) environments, i.e., lists of bindings of the form(x = vf�g) or (� = ef�g). Given �1 and x, we write�1(x) = vf�2g if (x = vf�2g) is the �rst binding of x ap-pearing in �1. The notation hvjeif�g is a shorthand forhvf�gjef�gi. To evaluate a ommand , we start the ma-hine with fg.h(�x:v1)f�1gj(v2 � e)f�2gi! hv1f(x = v2f�2g) :: �1gjef�2gih(��:)f�1gjef�2gi! f(� = ef�2g) :: �1ghvf�1gj(~�x:)f�2gi! f(x = vf�1g) :: �2ghxf�1gjef�2gi! h�1(x)jef�2gi (�1(x) is de�ned)hvf�1gj�f�2gi! hvf�1gj�2(�)i (�2(�) is de�ned)Remark that bindings of terms (ontexts) have the restritedform (x = V f�g) ((� = Ef�g)) when reduing CBV (CBN).The seond mahine exploits the idea of enoding environ-ments by means of indexes in a stak as in the Pointer Ab-strat Mahine from Danos-Regnier [7℄ (a restrition of itwas studied in a previous work of the authors [3℄).

The stak is a sequene of bindings that bind either a termor a ontext. Eah binding denotes both a losure and anenvironment of whih it is the more reent binding. Eahbinding omes with two indexes The �rst index points inthe stak to where the environment of the term (or ontext)whih turns it into a losure begins. The seond index pointsto where the environment of whih the binding is the morereent losure goes on. The onrete syntax for bindings is:(x n= vfpg) or (� n= efpg) (n; p natural numbers) :A state of the mahine is hvfpgjefqgis. If s is a stak, wedenote by s � n the stak popped n times and by jsj itslength. To evaluate hvjei, we start from hvf0gjef0gi. Therules of the mahine are as follows:h(�x:v1)fpgj(v2 � e)fqgifsg! hv1fp+ 1gjefqgif(x p= v2fqg) :: sgh(��:hvje0i)fpgjefqgifsg! hvfjsjgje0fjsjgif(� p= efqg) :: sghvfpgj(~�x:hv0jei)fqgifsg! hv0fjsjgjefjsjgif(x q= vfpg) :: sghxfpgjefqgifsg! h(s� p)(x)jefqgi ((s� p)(x) is de�ned)hvfpgj�fqgifsg! hvfpgj(s� q)(�)i ((s� q)(�) is de�ned)hvfpgjefqgifsg! hvfpgjefqgifs�min(jsj � p; jsj � q)gwhere ((x n= vfpg) :: s)(x) = vfpg((y n= vfpg) :: s)(x) = (s� n)(x) x 6= y((� n= efqg) :: s)(x) = (s� n)(x)and similarly for s(�).Remark 9.1. The last rule ats as a garbage olletingrule: it removes the part of the stak whih is used neitherby the term (the ode) nor by its ontext. For instane, ina funtional language with at atomi types (even with �x-points, e.g. PCF), the appliation of the last rule guaranteesthat a program of atomi type ends with an empty stak.
10. RELATED AND FUTURE WORKSThis setion ontains misellaneous remarks organized alonghopefully helpful keywords.� Symmetry. Altogether, we have de�ned six aluli: thefull ��~� syntax in CBN and CBV disipline (setion 4),the subsyntaxes ��~�T -alulus / LKT�~� and ��~�Q-alulus/ LKQ�~� (setion 5), and as further restritions the ��-alulus (setion 2) and the �~�-alulus (setion 6). At allthese levels, the duality of all-by-name and all-by-value isgoverned by the symmetry of the �-terms and the ~�-terms.The situation is summarized in the following table. In the

table, - shows a soure-to-target diretion (f. proposition5.3), while$ indiates stronger one-to-one orrespondenes(f. proposition 2.2 and 6.1). It would be interesting to om-plete this piture by adding more strong orrespondenes$. One ould in partiular show that CBV ��-alulus (forwhih let arrives naturally) relates to CBV ��~�-alulus.One ould also onsider all-by-name �-alulus plus let,whih has CBN ��~�-alulus as a target. In suh a alulus,one ould delay some substitutions, as in let x = yM1 inM2(or ��:hyjv1 � ~�x:hv2j�ii), i.e. we ould fore some sharingof subomputations.Logi Syntax Evaluation LanguageLK�~� ��~� 8<: NDCBNCBVLKT�~� ��~�T CBNLKQ�~� ��~�Q CBV - CBV ��LKT� �� CBN $ CBN ��LKQ~� �~� CBV $ �~�� Non-determinism. In [1℄ and [21℄, the non-determinism oflassial logi is enapsulated in ritial pairs similar to the(�)�(~�) pair. But no expliit onnetion with all-by-name/ all-by-value appears in those works.� Semantis. It is fairly lear that our syntax LK�~� withthe CBN (CBV) mahine an be interpreted in Selinger'sontrol (o-ontrol) ategories: the ategorial onstrutioninterpreting ! (�) is an exponent (a o-exponent), and �(!) is a weak o-exponent (a weak exponent). It should beinteresting and useful to work out the details of this inter-pretation.� Dynamis. Laurent has investigated (CBN) proof-nets foran extended polarized linear logi that losely orresponds to��-alulus [14℄. These proof-nets enjoy a simple orretionriterion. This suggests that a proof-net representation ofLK�~� is possible.� Games. We intend to develop a game interpretation ofour aluli. A game-theoreti analysis of all-by-value hasbeen given by Honda and Yoshida [12℄. One ould hope tosharpen the analysis so as to obtain a game-theoreti readingof the duality of omputation.� Expressivity. We have used the di�erene onnetive ina purely formal way. It would be interesting to study thisonnetive for its own sake and to get insights into its om-putational meaning. Crolard has initiated this kind of inves-tigation [2℄. One way of seeing the di�erene onnetive isthat it allows us to view ontexts as values: v�e is both a on-text whose hole has a funtion type A! B (as explained inthe introdution) and a pair of values of type B�A (viewedas a produt type). Under the latter interpretation, a ut ofthe form h�(x;�):jei appears as a destrutive let: \evaluatee to a pair, and bind the two omponents of the pair to xand �, respetively".
11. REFERENCES

[1℄ F. Barbanera and S. Berardi, A symmetri �-alulusfor \lassial" program extration, Information andComputation 125, 103-117 (1996).[2℄ Tristan Crolard, Typage des oroutines en logiquesoustrative, Pro. Journ�ees Franophones desLangages Appliatifs, Colletion Didatique, INRIA(http://pauilla.inria.fr/ja99/index.html) (1999).[3℄ P.-L. Curien, H. Herbelin, Computing with AbstratB�ohm Trees, in the Proeedings of the 3rd FujiInternational Symposium on Funtional and LogiProgramming, Eds M. Sato & Y. Toyama, WorldSienti�, 20-39 (1998).[4℄ V. Danos, Sequent Calulus and Continuation PassingStyle Compilation. To appear in the Proeedings ofthe 11th Congress of Logi, Methodology andPhilosophy of Siene, held in Craow, Kluwer (1999).[5℄ V. Danos, J.-B. Joinet, H. Shellinx, LKQ and LKT:sequent aluli for seond order logi based upon duallinear deompositions of lassial impliation, inAdvanes in Linear Logi, 211-224, CambridgeUniversity Press (1995).[6℄ V. Danos, J.-B. Joinet, H. Shellinx, A NewDeonstrutive Logi: Linear Logi, in The Journal ofSymboli Logi 62(3), 755-807 (1997).[7℄ V. Danos, L. Regnier, Mahina ex deo, ou enorequelque hose �a dire sur la mahine de Krivine,unpublished (1990).[8℄ G. Gentzen, Investigations into logial dedution(1935), e.g. in Gentzen olleted works, Ed M. E.Szabo, North Holland, 68� (1969).[9℄ J.-Y. Girard, On the unity of logi, Annals of Pureand Applied Logi 59, 201-217 (1993).[10℄ Ph. de Groote, On the relation between the��-alulus and the syntati theory of ontrol,Leture Notes in Computer Siene 822 (1994).[11℄ H. Herbelin, S�equents qu'on alule, Th�ese deDotorat, Universit�e Paris 7 (1995).[12℄ K. Honda and N.Yoshida, Game-theoreti analysis ofall-by-value omputation, Pro. ICALP 97, LetureNotes in Computer Siene 1256, Springer (1997).[13℄ M. Hofmann, T. Streiher, Continuation models areuniversal for ��-alulus, Pro. Logi in ComputerSiene (1997).[14℄ O. Laurent, Polarized proof-nets and ��-alulus,draft (1999).[15℄ C. H. L. Ong, C. A. Stewart, A Curry-HowardFoundation for funtional omputation with ontrol,Proeedings of ACM SIGPLAN-SIGACT Symposiumon Priniple of Programming Languages, Paris, ACMPress, January (1997).

[16℄ I. Ogata, Construtive Classial Logi asCPS-alulus, to appear in IJFCS (InternationalJournal of Foundations of Funtional Programming).[17℄ M. Parigot, ��-alulus: An algorithmiinterpretation of lassial natural dedution, Pro. ofthe International Conferene on Logi Programmingand Automated Reasoning, St. Petersburg, LetureNotes in Computer Siene 624 (1992).[18℄ G. D. Plotkin, Call-by-name, all-by-value and thelambda-alulus, Theoretial Computer Siene 1,125-159 (1975).[19℄ A. Sabry, M. Felleisen, Reasoning about programs inontinuation-passing style, Lisp and SymboliComputation 6(3/4), 287-358 (1993).[20℄ P. Selinger, Control ategories and duality: on theategorial semantis of the ��-alulus, draft (1999).[21℄ C. Urban, G. Bierman, Strong normalization ofut-elimination in lassial logi, Pro. Typed LambdaCalulus and Appliations, Leture Notes inComputer Siene (1999).
APPENDIX

A. THE ��-CALCULUSThe ��-alulus [17℄ is an extension of the �-alulus thatdeals with multiple onlusions and therefore allows us toaount for lassial reasoning. Under the Curry-Howardisomorphism, it an be seen as a �-alulus with ontroloperators, and is indeed equivalent to, say, Felleisen's �C-alulus [10℄. For the sake of onsisteny with our frame-work, we onsider two syntati ategories: the terms andthe ommands, and, aordingly, two kinds of typing judge-ments:Syntax: M ::= x jjMN jj �x:M jj ��: ::= [�℄MTyping judgements:� `M : A j� : (� ` �)Typing rules: �; x : A ` x : A j�� `M : A! B j� � ` N : A j�� `MN : B j��; x : A `M : B j�� ` �x:M : A! B j� : (� ` � : B;�)� ` ��: : B j�

� `M : A j� : A;�[�℄M : (� ` � : A;�)Redution rules (in all-by-name):(�x:M)N ! M [x N ℄(��:)N ! ��:[� (�;N)℄[�℄(��:) ! [� �℄where substitution is the usual (apture-avoiding) substitu-tion in the �rst rule and the third rule, while in the se-ond rule one replaes every subterm of of the form [�℄Mby [�℄(MN). There is an additional rule, similar to the�-redution, whih we do not inlude as a redution rule(rather, we treat it impliitly as an expansion rule):��:[�℄M = M (� not free in M)
B. LINEAR DECORATION OF LKT�~� ANDLKQ�~�In this setion, we omplete the work of setion 5 by pro-viding translations of LKT�~� and LKQ�~� into linear logi.Arrow types are translated as in [5℄.The translation of LKT�~� into linear logi is de�ned as fol-lows on formulas:XT = X (A! B)T = !?AT !?BT :Suh a translation whih onsists only in inserting modalitiesat some plaes without any other modi�ation is alled alinear deoration.Proposition B.1.� LKT�~�` �� LKT�~�` V : A j�� ; e : A LKT�~�` �� jE : A LKT�~�` �

9>>>>>>>=>>>>>>>; =) 8>>>>>><>>>>>>: !?�T LL̀?�T!?�T LL̀?AT ; ?�T!?�T ; AT LL̀?�T!?�T ; !?AT LL̀?�TThe linear deoration for LKQ�~� is de�ned as follows:XQ = X (A! B)Q = !AQ !?!BQ :Proposition B.2.� LKQ�~�` �� LKQ�~�` v : A ; �� LKQ�~�` V : A j�� jE : A LKQ�~�` �
9>>>>>>>=>>>>>>>; =) 8>>>>>><>>>>>>: !�Q LL̀?!�Q!�Q LL̀ AQ; ?!�Q!�Q LL̀?!AQ; ?!�Q!�Q; !AQ LL̀?!�Q

