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ABSTRACT

We present the Apji-calculus, a syntax for A-calculus + con-
trol operators exhibiting symmetries such as program/con-
text and call-by-name/call-by-value. This calculus is derived
from implicational Gentzen’s sequent calculus LK, a key
classical logical system in proof theory. Under the Curry-
Howard correspondence between proofs and programs; we
can see LK, or more precisely a formulation called LK,
as a syntax-directed system of simple types for Apji-calculus.
For Apji-calculus, choosing a call-by-name or call-by-value
discipline for reduction amounts to choosing one of the two
possible symmetric orientations of a critical pair. Qur anal-
ysis leads us to revisit the question of what is a natural
syntax for call-by-value functional computation. We define
a translation of Ap-calculus into Apji-calculus and two dual
translations back to A-calculus, and we recover known CPS
translations by composing these translations.

1. INTRODUCTION

Programming languages present implicit symmetries such
as input/output, or program/context. Less obviously — as
shown recently by Selinger in a categorical setting [20] —, the
picture can be extended to evaluation mechanisms: there
exists a symmetry between call-by-name and call-by-value.

On the logical side, the best fit for evidencing symmetries is
sequent calculus (based on left and right introduction rules).
But the correspondence between programs and proofs is tra-
ditionally explained through natural deduction (based on
right introduction and right elimination rules), implication
elimination (also called Modus Ponens) corresponding to
procedure application. We believe that this tradition is in
good part misleading. In this paper, we present a sequent
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calculus style syntax that exhibits the above symmetries in
a precise, (and — we believe — compelling) way.

A key step in this program was already accomplished in
[11], where it was shown that simply-typed A-terms (or Ap-
terms) in (call-by-name) normal form are in bijective corre-
spondence with cut-free sequent calculus proofs in a suitable
restriction of Gentzen’s LJ (or LK) [8]. Danos, Joinet, and
Schellinx identified the same restriction of LK — and called
it LKT as part of a thorough investigation of linear logic
encodings of classical proofs [5, 6]. Having gained through
this correspondence the “naturalness” that was making the
natural deduction usually preferred in practice, there was
no reason any longer not to systematically study A-calculus
through sequent calculus rather than through the traditional
Curry-Howard correspondence with natural deduction. Se-
quent calculus is far more well-behaved than natural de-
duction: it enjoys the subformula property, and destruction
rules — cuts — are well characterized in contrast with the
elimination rules of natural deduction which superimpose
both a construction and a destruction operation: the appli-
cation is a constructor in a term x M, but is destructive in
a term (Az.M)N.

The leading goal at the root of the present work was to con-
ceive a “sequent calculus” version of call-by-value A-calculus
and Ap-calculus. Our starting point was the observation
that the call-by-value discipline manipulates input much in
the same way as (the classical extension of) A-calculus ma-
nipulates output. Computing M N in call-by-value can be
viewed as filling the hole (hence an input) of the context
M [] with the result of the evaluation of N. So the focus is
on contexts waiting for values — a situation that sounds dual
to that of (output) values being passed to continuations.

This leads us to a syntax with three different syntactic cat-
egories: contexts, terms, and commands'. Commands are
pairs consisting of a term and a context, they represent a
closed system containing both the program and its environ-
ment. Correspondingly, we type these different categories
with three kinds of sequents. The usual sequents ' F A
type commands, while the sequents typing terms (contexts)

Danos has also recognized the relevance of these three cate-
gories in [4] where he extends the work of Ogata [16] on the
relation between LK(Q and call-by-value CPS-translations
[(LK]Cj) is the other natural restriction of LK considered in
5, 6]).



are of the foom I'  A|A (T'|A + A). The symbol “”
serves to single out a distinguished conclusion/output (hy-
pothesis/input), which stands for “where the computation
will continue” (“where it happened before”).

In the rest of this introduction, we offer as a prologue a
simple justification of the relevance of sequent calculus to
the computational study of the A-calculus. Call-by-name
evaluation in the A-calculus can be specified by the following
inference rule:

M —* \z.P

MN — Pz + NJ.
This recursive specification may be implemented with a stack
as follows:

(MN, S) —
(AP, N:S) —

(M, N:S)
(Plz < N], S)

This simple device is called Krivine abstract machine. It
can be rephrased using contexts instead of stacks:

(MN, E) — (M, E[[]N])
(\z.P, E[[N]) — (Plz+« N], E)

(Recall that a context is a A-term with a hole, denoted [],
which can be filled with a term, or another context: e.g.,
E[[]N] is the context obtained by filling the hole of E with
the context []N.) Consider the evolution of the types of the
holes in the contexts during the execution of the rules. If
N has type A and if the hole of F has type B, then the
hole of E[[]N] has type A — B. This corresponds to a
left introduction of implication (note that holes in contexts
correspond to inputs). Then the second rule of Krivine ab-
stract machine reads as a cut between an implication which
has been introduced on the right and an implication which
has been introduced on the left. We are here in the world
of sequent calculi, not of natural deduction.

In section 2, we recall the second author’s sequent calculus
analysis of (call-by-name) Au-calculus. In section 3, we dis-
cuss how to add call-by-value to the picture. This leads us
in section 4 to Apjfi-calculus and its typing system LK,;,
a logical system for classical logic (limited to the implica-
tion connective) with the three kinds of sequents introduced
above. In particular, we exhibit the symmetry between the
call-by-name and call-by-value disciplines, by means of dual
orientations of a single critical pair. In section 5, we an-
alyze two subsyntaxes: the Apjir-calculus and the Aujig-
calculus, and the corresponding sequent calculi LKT,,; and
LKQ,;. These calculi correspond to LKT and LK (Q); their
relation with linear logic is explained in appendix B. Our
translation of the Au-calculus arrives in the intersection of
these subsyntaxes, and the target reduction stays in Aujir-
calculus (Apfig-calculus) in the call-by-name (call-by-value)
discipline.

Section 6 is a “reverse engineering” exercise. Guided by
the goal of translating call-by-value normal forms into Apjig
normal forms; we revisit source call-by-value evaluation and
syntax: we work on an extension of the A-calculus with a
let construct, and then on a restriction of this extension
which in our opinion s the call-by-value counterpart of the

A-calculus.

In section 7, we complete the duality by adding the con-
nective “” (the difference). This allows us to exhibit fully
the duality between terms and contexts. In section 8, we
link our analysis to both the classical and the more recent
works on continuation semantics. Finally, in section 9, we
complete the description of cut-elimination in LK,;. We
conclude in section 10.

2. CALL-BY-NAME »u-CALCULUS IN SE-
QUENT CALCULUS STYLE

In this section we present (a variant of) the Ap-calculus of
[11]. This calculus is to sequent calculus what Ap-calculus
is to natural deduction. (The syntax and the typing rules of
simply-typed Ap-calculus are recalled in appendix A.) The
syntax (as well as those of the subsequent sections) embodies
the three syntactic categories discussed in the introduction:

Commands c = (v|E)
Contexts E:=a|v-E
Terms vi=g|pb.c|Arw

Its typing system is a sequent calculus based on judgements
of the following form:

c: (DFA) F|E:AFA F'Fov:AlA
and typing rules are given below:
Fla:AFa:AA
Fz:AFz:AJA
F'Fov:AlA 'E:BFA

'(v-E):A—> BFA

c:(FB:B, A)

'k pB.c:BIA

Fz:AFv:BJA

'FXzw:A— B|A

F'ov:AlA FT'E:AFA

(w|E) : (T'F A)

The notations (v|E) can be read as some context E[] filled
with v; when E = «, it becomes just another notation for
the naming construction [a]v in Ap-calculus.

Terms can be reduced by the following reductions rules:
(—) (Az.vi|(v2 - E)) —  (vi[z < v2]|E)
(k) (uB.clE) —  c[f « E]

Normal forms are those terms where either v =z or (E = «
and v # pf.c) in subexpressions of the form (v|E).



REMARK 2.1. OQur treatment of Ap-calculus does not fol-
low any longer the “cut=redex” paradigm of sequent calculus
as in [11]. Another treatment could have been to add the two
(contraction) rules

Dz:A|E:AFA

(z|E) : (T,z: AF A)

'-vV:B|B:B,A (V=zorV=>v)

V]a): (T FB:B, A)

and restrict the cut rule to the other combinations of v, E.
Then we have the “cut=redex” paradigm of sequent calculus,
but another annoying phenomenon shows up: there are two
derivations of (z|a). This can in turn be solved by removing
the introduction rule for x but then (v|E) does not any longer
include the (x|E) construction which must be added explicitly
in the grammar. No perfect world.

Until section 9, we ignore the explicit process of substitution,
i.e., as in natural deduction, we consider that the replace-
ment is actually carried out completely in a single step. This
makes it easier to convey our main observations and results.

We note that any normal Au-term v has the following form:

vi=zx|pb.c|Azw
c = (Azw|a) | (x|vr - ...

N

Up + Q)

We now define two translations © and " of Au-calculus into
the Ap-calculus. The translation N preserves normal forms,
while the translation ™ is compositional, i.e., preserves the
structure of (applicative) terms.

The translation *V involves a parameterization by a context
(a trick that goes back to Plotkin’s so-called colon transla-
tion [18]):

E NN.E
V¥ = (VNIE) where V =z | Az.M | pa. M

PROPOSITION 2.2. The translation ™V
to normal terms.

maps normal terms

PROOF. A Ap-normal form is either a variable z, or an ab-
straction Az.M (uB.c) where M (c)is normal, or an expres-
sion [a]M where M is normal and not a p abstraction, or an
expression M ... M,. The latter two cases correspond to
the two situations in which a “cut” (v|E) is not a redex. [

Notice that the term pS.[@](... (zM1)... M) and its trans-
lation pﬁ(z‘\(M{v (... (M,f/ -a)...))) are essentially the
same terms, up to a rearrangement. In the translation N,
applicative terms are turned the other way round: a vari-
able applied to a first argument then to a second and so

on becomes (an encoding of) a variable applied to a list of
arguments.

With simple adjustments (consisting in restricting inessen-
tially the syntax of the Au-calculus and in atomizing the (p)-
rule), the statement of proposition 2.2 can be improved: it
is essentially an isomorphism, i.e., a bijection that preserves
reduction step by step both ways. Consider the following
restriction of the syntax of the Apu-calculus that disallows
applications in contexts of the form Az.[] and M][] (this is
no real restriction since any application M N can be replaced
by an expansion pa.[a](MN), cf. appendix A):

vi=x|Azw| pb.c
¢ = [ala
ax=v]|av

As for reduction, we decompose the (p) rule of Ap-calculus
in smaller steps according to the form of the context:

(uB.(c[B < v- B])|E)

c[B + a]

(Bapp) (uB.clv-E) —
(Boar) (uB.clay  —

With these adjustments, proposition 2.2 can be restated as:

The translation V is an isomorphism: it is bijec-

tive, maps normal forms to normal forms, and
preserves reductions step by step.

The translation ™ which we define now is compositional but
does not preserve normal forms. This sort of translation
is quite well known, since it amounts to translate natural
deduction into sequent calculus.

" =z

(Az.M)" = Xz. M"

(uB.c)" = pB.v"

([a]M)" = (M"|a)
(MN)" = pa.(M"|N" - a)
The translation ™ maps a normal form to its image by the
previous translation modulo the use of the rule (u) only
(“administrative redexes”). Thanks to the insertion of pu
at each application node, the translation simulates the re-
duction rule of Apu-calculus without need to refine the (u)
rule.

PropoOSITION 2.3. The translation ™ is a homomorphism
from Ap-terms to Xu-terms, i.e., it preserves (call-by-name)
reduction. Moreover, for any Ap-term M, M" reduces by
repeated applications of the rule (u) to MV,

PRrROOF. Preservation of reduction is trivial. Note that the
preservation is even step to step: if v1 — w2, then v — v3.
The second part of the statement is an easy consequence of
the following:

(uB[o(x My .. My)™ —*

HB(e| (M - (.. (M} -a)...))) (k (u) steps)



REMARK 2.4. Without logical nor computational loss, one
may force the body of a A-abstraction to have the form pa.c
(expanding Ax.v as Az.pa.(v|a) when necessary). This ob-
servation leads to a variant of the Au-calculus where the -
abstraction is replaced by a double abstraction \(z, a).c, with
the following typing rule:

c:(Dyx: AFB: B,A)

't Az,a).c: A— B|A

3. CALL-BY-VALUE: INTRODUCING

Traditionally, one explains how to encode call-by-name in
call-by-value by introducing explicit operators that freeze
the evaluation of arguments. The same idea can be applied
to encode call-by-value on top of call-by-name, now freezing
the function until its argument is evaluated. The familiar
construct let x = N in P can be understood in this way.
Suppose that we want to compute an application M N in a
call-by-value discipline. A first step may consist in writing
(let © = N in Mz), with the intention that N should be
evaluated before being passed to Mz, or equivalently that
the application of M should be delayed until the argument
N is evaluated. With this aim, we introduce a new binding
operator i, which will turn out to be dual to pu. In first
approximation, we encode (let x = N in P) as (N|axz.P).
The correct encoding is actually

pa(Nljiz.(Pla)) .

The ji-abstraction allows us to turn (or freeze) the expression
P into a context waiting for the value of N. If P = Mz,
then we get pa. (N|az.{(ua’ . (M|z - o')|a)), which reduces by
(1) to pa(N|pz.(M|z - @)). What is the typing rule for j?
First, if ¢ is a command, then fiz.c is a context (which is
dual to pB.c). The typing rule is as follows:

c:(Iz: BFA)

I'|pz.c: BEA
One adds the following cut-elimination rule:

(i) (laze) — ca ]

which forms a critical pair with the (u)-rule, in any com-
mand of the form (uf.c1|ppz.c2). We impose that the (p)-
rule has priority in such a redex, yielding ci[8 <« pz.ca].
The (compositional) interpretation of the Au-calculus is now
redefined as follows:

' =z

(MN)" = poN" |z (M"|z - o))
(Az.M)" = \g.M?

([]M)" = (M"|a)

(nB.c)” = pB.c’

We next show how the call-by-value reduction is simulated
through this translation:

(Az.M)N)" = pa (N px.(Ax. M |z - o))
Sy (N (M o)
=) pa(M"[z — N"]|a)
(N =z or A\y.P)

The last unfreezing step is conditioned by the form of N":
if N is a value in the sense of [18], i.e., is an abstraction
or a variable, then the (f1)-reduction can be applied. Oth-
erwise, N begins with a p, which prevents an immediate
application of (1) and forces the evaluation of N”.

A final remark before we can start to capitalize our analy-
sis of call-by-name and call-by-value is that the translation
we just defined for call-by-value works as well as it stands
for call-by-name, provided one changes the priorities in the
reduction system. If one now applies fi as early as possible,
then M"Y reduces by repeated use of the g rule to M™. We
define the call-by-name (call-by-value) discipline as the ap-
plication of the three rewrite rules (—), (), and (1) giving
priority to (1) (to (u)). Then, in call-by-name, M™" is just
an optimized version of the translation M. This justifies
to use a neutral symbol, say T, instead of * and proposition
2.3 can now be rephrased as follows:

The translation ' is a homomorphism from Ap-
terms to Ap-terms for call-by-name reduction.
Moreover, for any Ap-term M, M™ reduces by
repj\c/zated applications of the rules (1) and (u) to
M™Y.

This suggests to consider a call-by-value counterpart ¥ to
translation and to proposition 2.2. But this raises the
question of what should actually be considered as call-by-
value normal forms in the A-calculus. We defer this analysis
until section 6.

4. THE SYSTEM LK.,

Collecting together the ingredients of the last two sections,
we arrive at the Apji-calculus whose syntax is

c = (vle)
vi=gx|pb.c| Az
ex=al|prc|lv-e

and evaluation rules are:
(—) (Az.vilve -e) —
(1) (uB.cle) —
() (vliz.c) —
Observe we have not supposed yet any commitments for

call-by-name or call-by-value reduction. This depends on
the order of the last two rules:

(va| (v ]e))
clB « €]
clz « v]

Call-by-value consists in giving priority to the
(n)-redexes (which serve to encode the terms,
say, of the form M N), while call-by-name gives
priority to the (fi)-redexes.

The two disciplines are hereafter referred to as CBN reduc-
tion and CBV reduction, respectively.

At the typing level, we obtain LK,; whose typing judge-
ments are:

c: (T'FA)

F'Fov:AlA

Ile: AFA



and whose typing rules are:

F'Fov:AlA Fle: AFA

(vle) : (T'F A)

Fla:AFa:AA

Dz:AbFz:AlA
¢:(TFB:B,A)
'k pB.c:B|A
c: (T,z: AF A)
I'pz.c: AFA

F'Fov:AlA I'le:BFA

T|v-e:A— BFA

Mz:AFv:BJA

'Xxwv:A—B|A

A Ap-term is translated into a Apfi-term as follows:

(MN)' = pa (N |z (M |z - a))
Oz M)t = e Mt

([M)T = (MT]a)

(uB.c)t = pB.c’

and a judgement I' F M : A| A of the Ap-calculus is trans-
LK,
lated into a LK, judgement T F  Mt: A|A.

REMARK 4.1. The above formulation of the rule (—) is
different from that of section 2, but is closely related to it:
the former (=) is just the application of the new (=) im-
mediately followed by (1), which is always possible in CBN
reduction, and is possible in CBV reduction when vs is a
variable or an abstraction, as required by the call-by-value
discipline of the A-calculus. (See also the decomposition of
call-by-value B reduction in two steps, using an explicit let,
in section 6.) The new formulation of the rule presents some
redundancy with the translation T: the old version of (=)
works as well as the new one as far as the reduction of some
M* s concerned, and the simpler translation ™ would work
as well as the translation T even in call-by-value provided
one takes the new version of (—). But in the larger context
of the full LK, the new rule is the only one to make sense
in CBV, while the translation t has been designed in such
a way that its image (unlike that of ™) lies in the intersec-
tion of two natural subsystems of LK 5, which we introduce
next.

5. TWO WELL-BEHAVED SUBSYNTAXES

In this section, we define subcalculi of Apji-calculus that we
call Apfir-calculus and Apfig-calculus because their typing
systems correspond to the systems LKT and LKQ of [5, 6].

Their definition is guided by the requirement of stability un-
der call-by-name and call-by-value evaluation, respectively
(propositions 5.1 and 5.3).

Syntax of Apjir Judgements of LKT,;

¢ = (vle) c: (T'FA)

vao=z|pb.c| Az FFov:A|A
E:=a|v E I';E:AFA
eux=jpx.c|E Ile: AFA

The contexts E are called applicative contexts. The typing
rules are the same as those of LK ,; for (v|e), uB.c, pzx.c, z,
and Az.v. The other rules are as follows:

'ia:AFa:AA

'tv:A|/A I';E:BFA

I'(v-E):A->BFA
I' E:AFA

T|E:AFA

In the judgement I'; E : A+ A, the sign “” not only de-
lineates a distinguished hypothesis, but also puts linearity
constraints on this hypothesis: it is a stoup, in the termi-
nology of Girard [9]. Note that implicit contractions are
present in the left implication rule. On the other hand, the
[ mechanism is the only way to switch from a distinguished
hypothesis to another hypothesis. The syntactic restrictions
on LKT,; say that this can be done only at the price of
turning the “” into a “|”. Putting these observations to-
gether, we see that the rules of LKT,; guarantee that a
formula in the stoup is never subject to a contraction rule.
For the same reasons, it cannot be subject to a weakening
rule (weakening outside the stoup is implicit in the typing
rule for a).

ProposITION 5.1. For any Ap-term M, MY and any of
its CBN reducts in Apfi-calculus lies in Apfir -calculus.

REMARK 5.2. The typing system considered in section 2
lives within LKT,;. Therefore, we shall call it LKT, . In
retrospect, in that section, we should have written I'; E :
AF A as judgement instead of T'|E : A+ A. Notice also
that with ™ or V' instead of ¥, one has a sharpening: the
reducts of the translation lie all in the Apu-calculus, in either
case.

We now turn to the call-by-value restriction.



Syntax of Apjig Judgements of LKQ,;

¢ == (vle) c: (T'FA)

Vi=uaz|izw FrFv:A; A
viu=pfe|V FFov:AlA
ex=al|prc|V-e Fle: AF A

The terms V are called values. The typing rules are the
same as in LK,; for (v|e), uB.c, pzr.c, a, and Az.v. The
other rules are as follows:

Nez:AkFx:A; A

FrFV:A; A I'le:BFA

r(vV-e):A->BFA

Fz: ARV :B|A

F'FXV:A—> B; A
FFV:A; A

THV:A|A

PROPOSITION 5.3. For any Au-term M, M' and any of
its CBV reducts in Apfi-calculus lies in Apfig -calculus.

Hence, for any Ap-term M, MT stands in the intersection
of LKT,;-calculus and Apjig-calculus (it uses only V’s and
E’s, in our notation), and its reducts stay in the relevant
subsyntax once an evaluation discipline has been fixed.

The systems Apjir-calculus and Apjig-calculus are also well-
behaved without reference to the Ap-calculus. It is easy to
check that Apjir-calculus (Apjig-calculus) is stable under
CBN (CBV) reduction and that normal commands lies in
Ap-caleulus (Ni-calculus, defined in next section).

6. WHAT IS CBV A-CALCULUS?

In section 2, we arrived at a perfect correspondence be-
tween call-by-name Ap-normal forms and (call-by-name) Aj-
normal forms. We wish to reach the same goal for call-by-
value normal forms. Moreover, for the purposes of duality,
we wish to eliminate the need of the p-operation to encode
call-by-value computation, since we did not need the i oper-
ator to encode call-by-name computation. Recall Plotkin’s
definition of call-by-value reduction:

Bv) MMV — Mz « V]
(V variable or abstraction) .

A typical (Bv) normal form is thus (Az.M)(yN), whose
translation

g {pBANT iz (y |z - )t (e MY E - )

contains a (—) redex. A simple way out of this first obstacle
is to extend the syntax of the A-calculus with a let construct:

M:=xz|X@x.M|MN|letxz=Nin M

and to replace (8yv) by the following reduction rules:

(let)  (Az.M)N — (letx =N in M)
(a application or let expression)

(letg) (letx =V in M) — Mz « V]
(V' variable or abstraction)

Then we extend the translation in the following way:
(let # = N in M)' = pa(NT |z (MT]a)) .

But consider now a term of the form (Azz'.M)(yN)V, which
is normal for Bv, and whose (let) + (letg) normal form is
(let z = yN in Ax'.M)V. We have:

((let £ = yN in Az’ .M)V)}

ua-(VT\fw-(ua'-((yN)Flﬂx-(M'-MTIa'))\Z -a))

)
pov(ped {(yN)¥ |z (A’ Mo ) [VT - o)

)
uf%((yl\/)*Iﬂﬂl(/\ﬂf'-f\ﬂ\Vi -a))
(=)
uw((yN)*IM-(fﬂ[ﬂf' « Vo))

(let x = yN in M[z' « V1

Hence the translation is able to reduce the “hidden” redex
(Az'.M)V. To cure this mismatch, we introduce a further
rule in the source language:

(letapp) (letz=ain M)N — (let x = ain (MN))
(z not free in N) .

This rule allows us to reduce (Azz'.M)(yN)V as follows:

Az M)(yN)V —  (letx =yN inXz'.M)V
— etz =yNin Az’ . M)V
— letz=yNin Mz « V].

Consider now a term of the form (Az.M)((Ay.V)(zN)) (y
not free in M), which is normal for By, and whose (let) +
(letg) normal form is let ¢ = (lety = zN in V) in M. We
have:

(let o = (lety = 2N in V) in M)T
ua.wa'.((zzv)*mzi?v*a'>>|ﬂx.<M*|a>>
(1)
pa{(zN) iy (V| (M |o)))

(i)
o (=) iy (Mo Vo))

(lety = zN in Mz < V])

Here again the translation is able to reduce the “hidden”
redex (let x =V in M). This leads us to introduce another
rule:
(letier) letx = (lety = Nin M) in P
— lety = Nin (letx = M in P)
(y not free in P)

It is easily checked that the (let) + (letg) + (letapp) + (l€tiesr)
normal forms are as follows:

M:=z|XeM|letx =xMM:...M,in M |xMM; ... M,



It is possible at this stage to write a translation ¥ from this
set of normal forms to Apji-terms in call-by-value normal
form. But we would have to use p in the translation, typi-
cally in a term like 2(yM), for which one has to write

(2(yM))x = (z|pB(y|M” - B) - a) .

In order to avoid placing applicative subterms in the con-
texts, and hence in order to achieve our second goal of “get-
ting rid of p”, we introduce a last rule:

(letexp) Ma — (let x =a in Mx)
(a application or let expression)

The (let) + (letg) + (letapp) + (letier) + (letexp) normal forms
are as follows:

Vi=z|zM
M:=V|letx=yVVi..Voin M |2zVVi...V,

We are now ready for our call-by-value normal form to nor-
mal form translation, which is defined below. Note the use
of the double abstraction (cf. remark 2.4 the point is that
we need p only under a A):

xvzz‘

Az.M)Y = XNz, a).MY

VY = (VY]a)
(zVVi. . V)X =(z|VY - VY- VY a)
(letx = yVVi... Vnin M)Y

=@VY VvV VY M)

In this translation, there is no p. This suggests to consider
a calculus symmetric to the Au-calculus of section 2, which
we therefore call the Aji-calculus. At the typing level, we
call the system LK@, to stress that it is a subsystem of
LKQ; (just as LKT,, is a subsystem of LKT};;, cf. remark
5.2).

Syntax of A (LKT,) Syntax of M\ (LKQ;)

c = (v|E) c = (Vl]e)
viu=1z|A(z,a).c|pb.c Vi=z| Mz, a).c
E:=a|v-E ex=a|prc|V-e

The rewrite rules for LKQj are (1) and the following new
incarnation of the rule (—):

Mz, @).clV-e) — cz«V,a+ ¢

Reading this back in A-calculus style, we arrive at the fol-
lowing syntax, which we call Af-calculus:

cu=[a]VVi...Vu)|lete=VVi...Vyinc
Vi=z| Mz, a).c

where usual Az.V can be seen as a shortcut for A(z, a).[a]V
(o not free in V). We consider the following reduction rules
for Api-calculus:

(BY) etz = Az, a).ct)Vi...Voinco

— cifz « Vi][[a]a < let x = aVa ...V, in c2]
(BY)  [BI(AM(z,0).0)Vi... Vo)

= clz « Vi][[a]a < [B](aVa... V)]
(letg) letx=Vinc — clz < V]

where c[[a]a < €] is the term obtained by replacing ev-
ery occurrence of [a](VVi...V,) in ¢ by e where a is re-
placed by (VVi...V,). Remark that (8v) derives directly
from (B )(seeing Az.V as a shortcut for A(z,@).[a]V). The
translation Y is straightforwardly adapted to Afi-terms, and
defines in fact a bijection between the two syntaxes:

.’Ev:.’IJ

Az, ).c)V = Az, a).c¥

([(VVi. V)Y =(VIIVY - VY )
(letx =VVi.. . Vyinc)V = (VYIVW... .. VY. jzc)

We can now state the CBV counterpart of proposition 2.2.

ProposITION 6.1. The translation Y is an isomorphism
from Afi-terms to Afi-terms.

REMARK 6.2. In [19], Sabry and Felleisen characterized
the theory induced on A-calculus by the call-by-value CPS
translation as the theory induced by the following two equa-
tions in addition to (Bv):

(Bun)  ElOa.M)Q] = (\a.E[M])P)
(B :=[]| EN| (Ae.P)E)

(Bfat) zViVa = (lety = zVi in yVs)

Our rules (letapp) and (letiey) correspond ezactly to (Bup)
(cases EN and (Ax.P)E, respectively). Note that the other
(let) rules are transparent from the point of view of the A-
calculus (without let). The rule (Baat), interpreted from right
to left, corresponds to the following n-like equation®:

px.(zle) = E (x not free in e)

Hence Sabry and Felleisen’s analysis of call-by-value \-calcu-
lus agrees with ours. What is new here is the sequent calculus
perspective which among others suggests us the choice of a
functional syntaz (the Aji-terms).

7. COMPLETION OF THE DUALITY

In order to dualize terms and contexts, we introduce a con-
nective dual to implication: the difference connective, de-
noted “”. The syntax of Apji-calculus is extended as follows
(we still call the extension Apji-calculus):

¢ = (vle)
vi=x|pBec|izu|e-v
ex=a|pr.clv-e|BAe

We add the following computation rule:

(=) A(e2-0)|BAer) —  (v[ei[B « ea])
and the following typing rules to LK, ;:
I'le:BFA

T|Bre:B—AF A

2This equation is dual to the equation pa.[a]M = M (a not
free in M) in Ap-calculus (cf. appendix A).



Cle: AFA 'tov:B|A

Fk(e-v): B—AJA
We define a duality of Apji-calculus into itself which works
as follows at the type level:

X=X
(A— B)° = B® — A°
(B—A)P° =A° - B°

The translations ¢°, v°, and e° of commands, terms, and
contexts are defined by recursively applying the following
table of duality:

r o pub px e-v v-e Ar [
a z fpr pp v-e e-v [BA Az

ProposiTioNn 7.1. In LK, ;, we have:

c: (O A) c®: (A°FT°)
Tho:A[A $eod A[v°: A°F T
Ile: AFA A° ke A%

One can extend the definition of Apjir-calculus and Apjig-
calculus in such a way that the above proposition restricts
and refines to a duality between Apjir-calculus and Apjig-
calculus. We just give the extended syntax of Apjir-calculus
and Apjig-calculus and leave the rest to the reader:

Apfir-calculus Apjig-calculus

c = (vle) c = (vle)
ve=zx|pBc|lizw|E-v Vi=z|dzcle V
E:=alv-E|BXe va=pfe|V
eux=pz.c|FE ex=al|pr.clv-e|BAe

8. CPS TRANSLATIONS

In this section, R stands for a fixed (arbitrary) type con-
stant. We define a translation of LK, ; types into intuition-
istic types (i.e., the types of the simply-typed A-calculus,
written using the mathematical notation where B4 means
the space of functions from A to B) as follows:

X=X
(A— B)* = RA™F”
(B — A)* = B* x R""

Note that if we read R as “false”, then the image of the
translation of A — B (resp. B — A) reads as classically
equivalent to A — B (resp. B — A). We next define a
translation of LKW—terms to A-terms as follows:

(v]e)* =

a =«
9 = \k.kx
)quﬁc

(1B
(1
( T1)) = )\k E(\(z, B).v pB)
(v-e)= Ak.vq(kx.k(z‘,eq))
(BX.e) = Ay, ).e"y

(e-v)* = Ao (Ay.k(y,e))

PrROPOSITION 8.1.

LRy PP
c: (I F A) 'R Fc¢“:R
LK, a A A4
I F v:A|A - I, R* +Fo®:RR
LK, ; A
Tle:A F A IR Fe®: R

Moreover, the translation validates the CBV discipline.

REMARK 8.2. When restricted to LK Q 5, proposition 8.1
can be sharpened in such a way that the following additional
implication holds:

q A
FFV:A;A = TR FVI:A°

provided one translates  as T, Ax.V as XN(z,8). V8 and V
as \k.kV when considered as a v.

Note that the disymmetry of the A-calculus forces the call-
by-value orientation of the (u) — (@) critical pair:

(AB.cF)(Az.c3)

(nB.cilpz.c2)? =
= ¢f[B « Az.ch) .

But the translation also takes care of the call-by-name dis-
cipline, via duality. We set * = Yo °. Then we have:

XP=X
(A B)> = B> x R"
(B AP = R(B—A® _ RA"xRBD

Note that this time A” reads as classically equivalent to
—A[X « —=X]. Note also that * can alternatively be taken

as primitive and < defined as = "o °.

PROPOSITION 8.3.

LK, . N
c: (D |— A) RV A"+ R
LK— . A .
r l— viAlA = RV, A" o™ RA
LK, > D)\ > RAD
Tle:A F A R A" ke : R”

Moreover, the translation validates the CBN discipline.

Combining * and < with the translation { from Au-terms, we
obtain two CPS-translations to A-terms:

Ap > A AP
(CBN) T'F M:A|A = AR +FM!"":R
A A< A A4
(CBV) T'F M:A|A = T R*FM'*:RF
The two translations are known in the literature: MT> is the
(call-by-name) Lafont-Hofmann-Streicher translation [13] of

M, and M9 is the call-by-value Plotkin-Fischer translation
of M [18]. The following dictionary is useful to recognize



this:
CBN CBV
Vi = AT
K — Ao<
Ch — R Ki=R"
A= Ca = R¥4

A A
Cr,Kak M™:Cy Vi, Ka b MT<:Ca

KAHB VAHR
:(BO_AO)q :RVAXRVB
=K xCa ~2V4s—=Cp

Here, the letters V, K, and C stand for values, continu-
ations, and computations, respectively. Lafont-Hofmann-
Streicher semantics maps computations to computations and
interprets a continuation of type A — B as a pair of a com-
putation of type A and a continuation of type B (think of the
stack NV :: S of section 1). Plotkin-Fischer call-by-value se-
mantics maps values to computations, and interprets a value
of type A — B as a function from values to computations.

9. HEAD REDUCTION IN AN ABSTRACT
MACHINE

In this section, we specify two kinds of (weak) head reduc-
tion machine.

The first machine is quite standard and based on environ-
ments. Instead of commands (v|e), we manipulate expres-
sions having the form (v{pi}|e{p2}), where p; and p» are
(explicit) environments, i.e., lists of bindings of the form
(x = v{p}) or (@« = e{p}). Given p; and z, we write
pi(z) = v{p2} if (x = v{p2}) is the first binding of = ap-
pearing in p;. The notation (v|e){p} is a shorthand for
(v{p}le{p}). To evaluate a command ¢, we start the ma-
chine with ¢{}.

(01 {p1 H(wz - ){p2})
= (0{(@ = va{p2}) : pr}le{p2})

((uB-c){p1}tle{p2})
= (B =e{p2}) =}

(vipi (i) {p2})
= c{(@ =v{p}) = pa}

(z{p1}]e{p=})
= (pr(z)le{p2})

(v{pr}afp2})
= (v{p1}lp2(a))

(p1(x) is defined)

(p2(a) is defined)

Remark that bindings of terms (contexts) have the restricted
form (z = V{p}) ((a = E{p})) when reducing CBV (CBN).

The second machine exploits the idea of encoding environ-
ments by means of indexes in a stack as in the Pointer Ab-
stract Machine from Danos-Regnier [7] (a restriction of it
was studied in a previous work of the authors [3]).

The stack is a sequence of bindings that bind either a term
or a context. Each binding denotes both a closure and an
environment of which it is the more recent binding. Each
binding comes with two indexes The first index points in
the stack to where the environment of the term (or context)
which turns it into a closure begins. The second index points
to where the environment of which the binding is the more
recent closure goes on. The concrete syntax for bindings is:

(x Z v{p}) or (a Z e{p}) (n,p natural numbers) .

A state of the machine is (v{p}|e{q})s. If s is a stack, we
denote by s — n the stack popped n times and by |s| its
length. To evaluate (v|e), we start from (v{0}|e{0}). The
rules of the machine are as follows:

((Az.v1){p}[(v2 - e){q}){s}
= (vi{p + }e{g){(z = va{q}) = s}

((uB-(vle)){p}le{a}){s}
= (o{lsl}e'{IsIN{(8 = e{a}) = s}

(v{p} (Az-(v'le){g}){s}
= (o'{Isl}e{[sI{(z = v{p}) =: s}
(z{p}tle{ah){s}
= ((s = p)(@)le{a})

(vi{pHodgh){s}
= (v{p}(s = g)(a))

(vip}le{a}){s}
= (v{p}e{gh){s —min(|s| —p,|s| - q)}

((s — p)(x) is defined)

((s — ¢)() is defined)

where

and similarly for s(a).

REMARK 9.1. The last rule acts as a garbage collecting
rule: it removes the part of the stack which is used neither
by the term (the code) nor by its contert. For instance, in
a functional language with flat atomic types (even with fiz-
points, e.g. PCF), the application of the last rule guarantees
that a program of atomic type ends with an empty stack.

10. RELATED AND FUTURE WORKS

This section contains miscellaneous remarks organized along
hopefully helpful keywords.

e Symmetry. Altogether, we have defined six calculi: the
full Apji syntax in CBN and CBV discipline (section 4),
the subsyntaxes Apujir-calculus / LK T,; and Apjig-calculus
/ LKQ,; (section 5), and as further restrictions the Au-
calculus (section 2) and the Aji-calculus (section 6). At all
these levels, the duality of call-by-name and call-by-value is
governed by the symmetry of the p-terms and the fi-terms.
The situation is summarized in the following table. In the



table, «= shows a source-to-target direction (cf. proposition
5.3), while « indicates stronger one-to-one correspondences
(cf. proposition 2.2 and 6.1). It would be interesting to com-
plete this picture by adding more strong correspondences
. One could in particular show that CBV Apu-calculus (for
which let arrives naturally) relates to CBV Apji-calculus.
One could also consider call-by-name A-calculus plus let,
which has CBN Apji-calculus as a target. In such a calculus,
one could delay some substitutions, as in let x = yM; in M»
(or pa.(ylvi - px.(v2|a))), i.e. we could force some sharing
of subcomputations.

Logic  Syntax Evaluation Language
ND
LK,;  pj CBN
CBV
LKT.: ujir CBN
LKQ.: Mufig CBV +— CBV A\
LKT, A CBN < OBN M\
LKQ; A CBV YRS Afi

e Non-determinism. In [1] and [21], the non-determinism of
classical logic is encapsulated in critical pairs similar to the
(1) — () pair. But no explicit connection with call-by-name
/ call-by-value appears in those works.

e Semantics. It is fairly clear that our syntax LK,; with
the CBN (CBV) machine can be interpreted in Selinger’s
control (co-control) categories: the categorical construction
interpreting — (—) is an exponent (a co-exponent), and —
(—) is a weak co-exponent (a weak exponent). It should be
interesting and useful to work out the details of this inter-
pretation.

e Dynamics. Laurent has investigated (CBN) proof-nets for
an extended polarized linear logic that closely corresponds to
Ap-calculus [14]. These proof-nets enjoy a simple correction
criterion. This suggests that a proof-net representation of
LK, is possible.

e (Games. We intend to develop a game interpretation of
our calculi. A game-theoretic analysis of call-by-value has
been given by Honda and Yoshida [12]. One could hope to
sharpen the analysis so as to obtain a game-theoretic reading
of the duality of computation.

e Ezpressivity. We have used the difference connective in
a purely formal way. It would be interesting to study this
connective for its own sake and to get insights into its com-
putational meaning. Crolard has initiated this kind of inves-
tigation [2]. One way of seeing the difference connective is
that it allows us to view contexts as values: v-e is both a con-
text whose hole has a function type A — B (as explained in
the introduction) and a pair of values of type B — A (viewed
as a product type). Under the latter interpretation, a cut of
the form (A(z, ).c|e) appears as a destructive let: “evaluate
e to a pair, and bind the two components of the pair to =
and «, respectively”.
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APPENDIX
A. THE »-CALCULUS

The Ap-calculus [17] is an extension of the A-calculus that
deals with multiple conclusions and therefore allows us to
account for classical reasoning. Under the Curry-Howard
isomorphism, it can be seen as a A-calculus with control
operators, and is indeed equivalent to, say, Felleisen’s AC-
calculus [10]. For the sake of consistency with our frame-
work, we consider two syntactic categories: the terms and
the commands, and, accordingly, two kinds of typing judge-
ments:

Syntax:

M=z |MN|Xx.M| pB.c

¢ = [a]M
Typing judgements:

r-M:AlA c: (T'FA)

Typing rules:

Dz:AbFz:AlA

ITFM:A— B|A THN:AlA

T'FMN:B|A

Iz:AFM:B|A

T Az.M:A— B|A
c: (' B:B,A)

'k pB.c:B|A

FFM:A|la: AA

[@M:(PFa:AA)
Reduction rules (in call-by-name):

(Ax.M)N — Mz < N]
(uB.c)N = pa.c[f « (a,N)]
[a](uB.c) — c[B < a]

where substitution is the usual (capture-avoiding) substitu-
tion in the first rule and the third rule, while in the sec-
ond rule one replaces every subterm of ¢ of the form [S]M
by [@](MN). There is an additional rule, similar to the
n-reduction, which we do not include as a reduction rule
(rather, we treat it implicitly as an expansion rule):

pajalM = M (a not free in M)

B. LINEAR DECORATION OF LkT,; AND
LKQuﬂ

In this section, we complete the work of section 5 by pro-
viding translations of LKT),; and LK(Q,; into linear logic.
Arrow types are translated as in [5].

The translation of LKT,; into linear logic is defined as fol-
lows on formulas:

XT=x (A- BT =14 572B".

Such a translation which consists only in inserting modalities
at some places without any other modification is called a
linear decoration.

ProprosITION B.1.

LKT, LL
r+ A e’ AT
LKT,; LL

L FoVaAlA 1Pr7 24T 2AT

LKT,5 ' T T LL T
l;e:A F A 7T AT F7A

FH T 1707 1747 £ 7AT
NE:A +F A AR -

The linear decoration for LK), is defined as follows:

X9=X (45 B)? =149 571B% .

ProPOSITION B.2.

LEQp

r A re oaipne
LKQupa LL
r + w:A;A — IT? F AQ 71A°
LKQ,; LL
r K V:AlA ITQ 2149 71A9
LEQua 0@ 142 a0

TNE:A + A



