Exercices du cours "outils formels de base"

Master LTD - ENS - Paris 8

1. Expressions régulières

Soit A^* le monoïde libre sur l'alphabet $\{a, b, c\}$. Si E et F sont des sous-ensembles de A^* , on note E+F l'union des deux ensembles et E.F l'ensemble des mots de A^* qui sont la concaténation d'un mot de E et d'un mot de E. On note également E^* l'ensemble des mots de A^* qui sont obtenus en concaténant E^* 0, E^* 1, E^* 2, E^* 1, E^* 2, E^*

- $\{b\}\{a\}^*$ $- \{a\}^*\{b\}\{a\}^*\{b\}\{a\}^*$ $- (\{a\} + \{b\})^*$ $- (\{a\} + \{b\})^*(\{aa\} + \{bb\})(\{a\} + \{b\})^*$
- 2. Vérifier que :
 - -E.(F+G) = E.F + E.G
 - $-E^* = \{\epsilon\} + E + E^2 + E^3 + \dots$
 - $-E^* = \{\epsilon\} + E.E^*$
- 3. Un ensemble de mots peut être représenté plus simplement comme une somme. Par exemple, $\{a, b, c, d\}$ sera représenté par a+b+c+d. Ainsi, $\{b\}\{a\}^*$ sera représenté simplement par ba^* , $\{a\}^*\{b\}\{a\}^*\{b\}\{a\}^*$ par $a^*ba^*ba^*$, $(\{a\}+\{b\})^*$ par $(a+b)^*$ et $(\{a\}+\{b\})^*(\{aa\}+\{bb\})(\{a\}+\{b\})^*$ par $(a+b)^*(aa+bb)(a+b)^*$. Démontrer que :
 - (a+b)(c+d) = ac + ad + bc + bd $- a(ba)^* = (ab)^*a$
- 4. Quels ensembles de phrases représentent les expressions régulières suivantes :

$$(the + this + a) \ girl \ (came + arrived)(early + late)$$

 $a \ very^* \ beautiful \ (girl + boy)$

5. Systèmes thuiens et semi-thuiens

Soit le système R sur l'alphabet $\{a, b\}$ tel que $ab \leftrightarrow \epsilon$ et $ba \leftrightarrow \epsilon$. En quoi peut se réduire le mot aaabababbb? A quelle condition deux mots sont-ils équivalents?

- 6. Soit le Système de Réécriture suivant sur l'alphabet {a, b, c}. L'axiome est bc. Les règles de réécriture sont :
 - R1 tout mot ϕ sur l'alphabet peut se réécrire $\mathbf{a}\phi\mathbf{a}$
 - R2 tout mot ϕ de la forme $\alpha \mathbf{b} \alpha' \mathbf{c} \alpha''$ peut se réécrire $\alpha \mathbf{b} \alpha' \mathbf{a} \mathbf{c} \alpha'' \mathbf{a}$

On appelle "théorème" tout mot que l'on peut obtenir par dérivation à partir de l'axiome.

- Donner dans ce système la dérivation des "théorèmes" **aaabcaaa**, **aaabaacaaaaa**, **baacaa**
- Les mots suivants sont-ils des "théorèmes" :
- aabaaacaa
- abca
- abcaaa
- abaca
- abacaa
- Trouver un critère permettant de deviner à l'avance (i-e avant d'essayer de faire la dérivation) si un mot donné est un théorème ou non.
- Peut-on trouver une grammaire hors-contexte pour ce système?

7. Grammaires

Soit G la grammaire définie par $V_N = \{S, A, B\}$ et $V_T = \{a, b\}$ et :

Quel langage engendre-t-elle?

8. Soit G la grammaire suivante :

$$V_N = \{SDP, TVP, NP, VP\},\$$

 $V_T = \{child, doctor, every, some, no, Bill, Mary, John, laughed, cried, hugged, criticized\},$ avec les règles :

+ pour tout $C \in \{S, NP, VP, TVP\}$:

$$\begin{array}{ccc} C & \rightarrow & C \ and \ C \\ C & \rightarrow & C \ or \ C \\ C & \rightarrow & neither \ C \ nor \ C \end{array}$$

dériver dans cette grammaire :

- Bill's child
- every doctor's child criticized Bill
- some doctor laughed and no child cried
- neither Bill nor John criticized Mary's doctor
- Bill and some doctor hugged and criticized Mary
- 9. Soit G une grammaire où $V_N = \{S', S, N'', V'', V'', V', P'', prep, aux, comp, det\}$, l'axiome est S', et où les règles sont :

$$S' \rightarrow comp S$$

$$S \rightarrow N'' V''$$

$$V'' \rightarrow (aux) V'$$

$$V' \rightarrow V(N'')(P'')(S')(prep V'')$$

$$N'' \rightarrow (det) N'$$

$$N' \rightarrow N (S')$$

$$P'' \rightarrow prep N''$$

Les parenthèses signifient l'optionnalité, par exemple (X) signifie : X est possible mais pas nécessaire. On admet que comp peut se réécrire \emptyset .

 Montrer qu'avec un lexique approprié, cette grammaire permet d'engendrer les phrases :

Pierre dit que les journalistes mentent

Pierre prédit à sa soeur qu'elle va réussir son examen

Pierre donne le conseil à sa soeur qu'elle devrait travailler

Pierre dit à son frère de rapporter du pain

- Dessiner les arbres de dérivation
- dans la phrase Pierre prédit à sa soeur qu'elle va réussir son examen, les parties suivantes sont-elles des constituants :
 - à sa soeur
 - prédit à sa soeur
 - sa soeur qu'elle va réussir son examen
 - réussir son examen
- 10. Soit G la grammaire définie par $V_N = \{A, B, C\}$ et $V_T = \{0, 1\}$ et :

Démontrer que tout mot de $V_T^* - \{\epsilon\}$ est un A, un B ou un C.

Si A est l'axiome, donner quelques exemples de mots de ce langage. Qu'ont-ils de particulier?

11. Soit G la grammaire d'axiome S telle que $V_T = \{a, b, c\}$, $V_N = \{S, A, B, C, D\}$, avec les règles :

$$\begin{array}{ccc} S & \rightarrow & AB \mid CD \\ A & \rightarrow & aAb \mid ab \\ B & \rightarrow & Bc \mid c \\ C & \rightarrow & aC \mid a \\ D & \rightarrow & bDc \mid bc \end{array}$$

Montrer l'ambiguïté du mot aabbcc.

12. Soit G la grammaire donnée par : $V_N = \{S\}$ et $V_T = \{a\}$ et les règles :

$$\begin{array}{ccc} S & \rightarrow & aS \\ S & \rightarrow & aaS \\ S & \rightarrow & a \\ S & \rightarrow & aa \end{array}$$

Combien y a-t-il d'arbres syntaxiques différents pour engendrer le mot aaaaa?