
Ludics and Rhetorics

Abstract

In this paper, we give some illustrations of the expressive power of Ludics with re-
gards to some well known problems often regrouped under the label of Rhetorics.
Nevertheless our way of considering Rhetorics encompassesmany questions which
have been put nowadays in Semantics and Pragmatics.

1 Introduction

Language is mainly interaction. It may even be said, following famous cognitivist S.
Pinker thatlanguage emerges from human minds interacting with one another. The
main interest of Ludics, for the study of natural language, resides in the possibility it
offers for expressing this interaction.
There are many indices of this interaction in language itself and even in syntax, as wit-
nessed by the presence of many small words which have essentially a rhetoric or prag-
matic impact, like ”even”, ” nevertheless” or ” but”. Like French linguist Oswald Ducrot
said during the eighties, these words cannot be understood simply in truth-conditionnal
terms. ”But” is not simply ”and” for instance, and if, for a truth-conditionnal view-
point, there is not a big difference between ”few” and ”a few”, it remains that from a
pragmatic side, it is quite obvious that sentences containing these two words cannot
be pursued in the same way. If I sayPeter has read few books by Virginia Woolf, this
can be continued bytherefore he does not know her well as a writer, and if I sayPeter
has read a few books by Virginia Woolf, this can be continued bytherefore he knows
her as a writer a little, and the converse discourse cannot be pronounced. This can
be interpreted if we assume that the speaker answers an implicit question which could
be : Does Peter know Virginia Woolf well as a writer?, and that ”few” is a negative
item, while ”a few” is a positive one. Vague quantifiers, like ”few”, ”a few”, ”many”,
”a lot”... denote, as is well known, (approximative) positions on a scale, but specific
vague quantifiers have the property of orienting this scale in a direction or in another.
”But” has a similar property: taking two propositions as inputs,it does not only pro-
vide us with a coordination of them, something which can be done by a simple ”and”,
it also creates a scale which can be scanned in two opposite directions: one proposition
is supposed to be oriented towards one end and the other one towards the other end.
This is particularly visible when ”but” is used to coordinate two quantified expressions,
thus requiring they have opposite directions of variation (cf. he has many relatives but
few friendsvs *he has many relatives but many friends).
We may also study the phenomenon of presupposition and see about it that it is as if a
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dialectical structure was at stake. IfA says toB : ”I don’t regret to have been watch-
ing the movie”,A not only says something about his/her feelings (that s/he does not
regret) but also restricts the waysB can react to this assertion becauseB is supposed
to know thatA went to see the movie, or if s/he did not know, is required to include
in his/her knowledge database that of courseA watched the movie. All these facts are
well known. They all assume a model of conversation where each speaker takes into
account not only the assertions made by the other but also (and perhaps mainly) theset
of expectationsthat each speaker has concerning the reactions of the other.
Ludics exactly provides a framework where the ”actions” of one speaker, seen as ”pos-
itive”, not only depend on the actions of the other of the samepolarity, but also on its
expected answers, that is ”negative” actions.
In this paper, we shall develop some concepts of Ludics for language study. The body
of the paper will present them in a rather intuitive setting,while the Appendix gives
more precise definitions. Section 2 presents the ludical notions of designsandnor-
malization, with their interpretations in proof-theoretic terms and in strategic ones :
Ludics formalizes moves in a game as well as in the research ofa proof. Section 3
applies these notions to Rhetorics and Eristics. It makes use of an extension of designs
(c-designs) due to K. Terui which has two main advantages : it provides a linearized
formulation of designs which makes them to look likeλ-terms, and it includescuts.
Section 4 tries to give an account ofsemantics, as it is generally understood, that is
the context-free study of meanings, but instead of staying stuck to a truth-conditional
conception of meaning, we envisage it as something built in interactions. There are
two ways of looking at meaning : as a simple set of justifications (when we take in
consideration all the possible objections which can be madeto a sentence), or as abe-
haviour, that is the set of all designs which give the same results forall the interactions
(in terms ofconvergence / divergence). Complex articulated sentences may be viewed
as combinations of more elementary behaviours. After a completeness theorem, the
behaviours generated by such operations are complete, in the sense that they contain
no other design than those obtained by the operations. Because a behaviour is ordered
by a relation of refinement, and because behaviours may be ordered by inclusion, it is
possible to associatea family of behaviours with a sentence, each of them reflecting
some degree of refinement. Because, for a sentence, there is in principle no end to the
process of its examination, there are no ”atoms” properly speaking. In the conclusion,
we come back to the main features of our approach and emphasize its proximity with
some neuro-cognitivist views on meaning (Changeux).

2 Ludics for Language Moves

2.1 Designs

Let us calllanguage moveevery move that a speaker makes during a conversation. A
positive move consists in an explicit assertion or question. A negative one consists in
a way of collecting the content of the other’s utterrance andreacting to it in a purely
mental way. If somebody says to me:

(1) Are you still smoking?
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I will store in my short term memory thatthis is a questionand that it is assumed that
I was a smoker (and even that perhaps I am still one). I also know of course that the
speaker who says (1) has some informations on me and, in particular that s/he knows
(or believes) that I was a smoker. Therefore when s/he asked his or her question, s/he
had in mind some of the states in which I can be. In the absolute, these states are
combinations of the following:

I was a smoker vs I was not a smoker
I presently smoke vs I don’t presently smoke

The point here is that by (1), the speakera priori eliminates two states, those the
commun feature of which isI was not a smoker.
Let us represent the various possible elementary states by integers0/1, which are also
calledbias. A moveis a sequence of such bias. Many exchanges are such that they
have only moves of length 1: in such a case, the player who moves (either negatively
or positively) simply adds a bias to a previous sequence which summarizes the history
of the exchange, but sometimes s/he adds three bias at a time or even perhaps more.
Let us suppose a positive move of a player is anelementaryquestion. By asking it,
s/he adds a bias, let us call it 0. After this positive move, s/he makes a negative one,
which consists in expecting an answer 0 or 1 (if there are onlytwo possible answers,
like it is the case for dichotomic questions) : these are precisely theloci where the other
player could play if there would be no presupposition (case of did you ever smoke?, for
instance). But by asking a complex question like (1) (that Aristotle named amultiple
question), two elementary questions are combined (to each of which weassign a bias 0)
so that in fact, the only ”loci” the speaker provides to his orher opponent are0000 and
0001 (and neither0100 nor0101). Let us therefore assume that the speaker starts from
scratch (a situation which is in reality never the case!), werepresent that by the empty
locus< >. By asserting (1), the speaker directly jumps to the set of possible answers
{0000, 0001}. If it happens that, in reality, I never smoked, I have no locus to answer:
we say that the conversation locally diverges. Only a ”meta”-game allows us to fix the
interaction. This ”meta”-game uses pieces of interaction which are ”ready made”, for
instance one of them consists in forcing the speaker toretract oneself. This is done
by erasingthe whole interaction andreplacing it by a more fine-grained interaction,
according to which:

1. the speaker gives at first the alternatives00 and01

2. and plans, if the other speaker answers by00, to give another set of alternatives
0000 and0001

There is another kind of move, the one in which the speaker decides s/he has got enough
information, for instance by means of an answer from the other speaker which satisfies
him or her. There is no bias added in that situation, only a signal indicating that the
exchange is over. We note† such a move, which is a positive one. Generally, no
speaker’s viewpoint can end up on an indefinite wait for a positive action1.
We may represent this interaction in the following way:

1except in case of a partial design, the last positive rule being symbolized byΩ which precisely means
the absence of rule.
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The Speaker’s viewpoint (S)

†
⊢ 0000

†
⊢ 0001

(−, 000, {{0}, {1}})
000 ⊢

(+, 00, {0})
⊢ 00

†
⊢ 01

(−, 0, {{0}, {1}})
0 ⊢

(+, < >, {0})
⊢< >

”My” viewpoint A

0000 ⊢
(+, 000, {0})

⊢ 000
(−, 00, {{0}})

00 ⊢
(+, 0, {0})

⊢ 0
(−, < >, {{0}})

< >⊢

or

0001 ⊢
(+, 000, {1})

⊢ 000
(−, 00, {{0}})

00 ⊢
(+, 0, {0})

⊢ 0
(−, < >, {{0}})

< >⊢

A third issue is the one for which I object that I never smoked,which would be, on my
viewpoint:

01 ⊢
(+, 0; {1})

⊢ 0
(−, < >, {{0}})

< >⊢

We may contrast this kind of exchange with the one in which there is presupposition
(or multiple question). The Speaker’s viewpoint is replaced by:

†
⊢ 0000

†
⊢ 0001

(−, 000, {{0}, {1}})
000 ⊢

(+, < >, {0}); (−, 0, {{0}}); (+, 00, {0})
⊢< >

A’s viewpoint is replaced by:

0000 ⊢
(+, 0, {0})

⊢ 000
C

< >⊢

or

0001 ⊢
(+, 0, 1})

⊢ 000
C

< >⊢

WhereC is the chronicle(−, < >, {0})(+, 0, {{0}})(−, 00, {0}).

2.2 Normalization

Let us examine how the previous viewpoints (ordesigns) may interact.
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1. at the bottom of each design, we have either⊢< > or < >⊢, that is twice the
samelocusbut with two different polarities. This is exactly similar to a situation
where the cut-rule may apply in a sequent calculus. The difference is here that
there will be no formulation ofcut as a rule, but simply we shall consider a cut
as a situation where twoloci meet with two different polarities. In that case,
this cut may be eliminated according to the standard technique. After the first
elimination, what remains is:

†
⊢ 0000

†
⊢ 0001

000 ⊢

⊢ 00 ⊢ 01

0 ⊢

0000 ⊢

⊢ 000

00 ⊢

⊢ 0

2. a new cut appears after this first elimination: between0 ⊢ and⊢ 0. This exactly
illustrates the fact that there is a minimal agreement between two speakers: the
second agrees to record in his or her own mind the question asked by the first
one, what remains is:

†
⊢ 0000

†
⊢ 0001

000 ⊢

⊢ 00

0000 ⊢

⊢ 000

00 ⊢

3. again new cuts appear, the first one between00 ⊢ and⊢ 00, then between000 ⊢
and⊢ 000, and finally between0000 ⊢ and⊢ 0000, when this last cut is elimi-
nated, what remains is :

†
⊢

something we shall consider anull object.

Such a termination will be associated to aconvergencecase (see the Appendix). The
two objects which have converged this way when put together are said to beorthogonal
designs. It is now obvious that our so called third issue does not converge with the pre-
suppositional question made byS since after the first and the second cut-eliminations,
there is no cut situation any longer.

2.3 Strategies, proofs and designs

By paying attention to the previous example, we can observe that what we named
”viewpoints” were in fact exactly likestrategiesthat players can have when playing
together. In the Appendix, the reader can find the definition of designs. Intuitively
speaking, designs are sequences of moves, each of which being associated with the
application of a rule (positive or negative), they can therefore be seen at the same time
asdeductionsor proofs. The dialectical interaction that we have between a speaker
S and his or her co-speakerA may be seen either as the opposition of two strategies
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in a game or as a tentative to build a proof against the objections (or the counter-
proof) of the other speaker. One of the main differences withthe usual games lies in
the fact that there may be no winner in that kind of game : if we believe in Grice’s
Cooperation Principle, the goal isnot to win against the other speaker but to reach
together a situation in which there is anagreementon expectations. Such a situation
is expressed in terms of convergence. Divergence, on the contrary, may be assigned to
failure, like presuppositional failure.
Let us otherwise notice that, conceived this way, dialectical exchanges seem to occur
not by opposing steps to steps, one by one, but by opposing a whole strategy to another
one. It is as if each speaker had in his or her own mind, a whole plan, or as if s/he
wasprojectingan entire design. This seems to be in agreement with present views in
neurosciences, as attested by these words of Jean-Pierre Changeux (himself quoting
works by Sperber and Wilson):

”Human communication generally takes place in a well definedcontext
of knowledge in which speakers are informing each other [...] Aiming at
maximizing the efficience of communication, each speaker tries to recog-
nize and to infer the intention of the one who communicates. In other
words, when communication begins, each partner has in his orher own
mind the whole possible content of the speech, which constitutes a sub-
set of all his or her knowledge on the world. [...] We may thinkthat each
speaker constantly tries to project his or her frame of thought into the mind
of his or her co-speaker”.

3 Some Applications to the Argumentation Theory

3.1 Controversies

In the previous section, it was seen that by associating a design with a speaker’s view-
point in a dialogue, we may highlight its interactive features. In doing so, we give an
account of the interactive content of a discourse in the following way : a speech turn is
anchored on a locus created by the previous one, due to the other speaker, and creates
new loci on which the interaction will continue. The design associated with a view-
point can be more or less elaborated : in the simplest cases, it is only a positive action,
but sometimes, like in a presuppositional case, it is a sequence of successive actions
(or chronicle). Moreover, it may be still more elaborated in the case ofcontroversies,
which we will consider below.
Let us define acontroversyas a language game in which there is a goal, consisting in
getting awinningposition in a debate2. Controversies are therefore a subset of the class
of dialogues.

2Technically speaking, a strategy is winning if it does not use the daı̈mon. We retrieve the notion of
winning designdefined by J.-Y. Girard.

6



3.2 Fallacies andc-designs

3.2.1 c-designs

Controversies may contain figures of dialogue, calledfallacies, which are mainly used
to confound the interlocutor. We know that, in hisSophistical Refutations(or De So-
phistis Elenchis), Aristotle was the first to show how to refute these dialectical tricks.
We will try to see in the following how it is possible to characterize fallacies by means
of special properties of the designs which represent them. In order to do so, we will use
a variant of Girard’s designs, called ”c-designs”3, defined by K. Terui [Terui 08]. ”c”
comes from ”computational” :c-designs extend ordinary designs in that they contain
explicit interactions and moreover, they allow to define infinite designs by means of
finite devices called theirgenerators.
The reader will find a more complete presentation ofc-designs in the Appendix. Let
us only focalize on their main features. Instead of using theproof-like presentation,
the c-designs may be roughly described as generalisedλ-terms. In the term calculus
which results, we have not a simple, unique application but many ones, in fact as many
as there are elements in a signature setA consisting in a given set of pairs(a, n) where
a is a name andn is an arity. The normal terms or cut-freec-designs are still sequences
of alternated actions, but :
- positive actions are either constants:† (daı̈mon or abandon) andΩ (divergence or
absence of rule), or proper and specific actions (denoted bya for a given namea);
- negative actions are either variables (x, y, z,. . . ) or proper negative actions (denoted
by a(x1, ..., xn)).
Then the terms (orc-designs) are defined as follows:
- a negativec-design is either a variable or a sum of negative actions applied with pos-
itive c-designs as operands:a0(~xa0

).Pa0
+ · · · + ak(~xak

).Pak
;

- a positivec-design is either a constant († or Ω) or an application which is denoted
by N0||a < N1, . . . , Nn > where|| indicates an interaction (or cut). Such an inter-
action is an application in the following sense: ifN0 contains a subterma(~xa).Pa

then we have to perform the application(Pa)N1 . . .Nn. Precisely, in such a case
N0||a < N1, . . . , Nn > reduces intoPa[N1/x1, . . . , Nn/xn]. Otherwise, if there
is no subterma(~xa).Pa in N0 (or, equivalentely, ifN0 contains the subterma(~xa).Ω)
the interaction diverges. For instance, the design (i) below is translated into the term
(ii):

(i)

†
⊢ x.6.1, x.6.2

x.6.0.3 ⊢ x.6.0.4 ⊢
(x.6.0, {3, 4})

⊢ x.6.0
(x.6, {{1, 2}, {0}})

x.6 ⊢
(x, {6})

⊢ x

(ii) P = x||{6} < {1, 2}(x1, x2).† + {0}(y).y||{3, 4} < Ω−, Ω− >>

whereΩ− is a notation forΣa∈Aa( ~xa).Ω.
Since inP the first negative term is the variablex, there is no cut. In such a case we

3see more details in the Appendix.
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use the term ”chanel” to talk about the variablex and indicates that it is the locus on
which an interaction may be plugged in. This design, based onx, consists in a positive
action (named{6}) which gives access to two negativec-designs:

• the first one begins by a negative action{1, 2}(x1, x2) which, in principle, binds
the variablesx1 andx2 in any c-design which follows (here†, which is a con-
stant).

• the second one performs a negative action{0}(y) which bindsy inside the pos-
itive c-design:y||{3, 4} < Ω−, Ω− > which follows this negative action. The
later positive design reduces to a simple positive action{3, 4} since in fact no
(total) negativec-design follows it.

Let us note thatc-designs (terms) where|| occurs between a mere channel and a subde-
sign correspond to Girard’s designs. Nevertheless, there are cases for which|| occurs
between two subdesigns : in these cases,c-designs extend Girard’s designs, because
they now involvecuts. || is therefore interpreted as a cut-plugging. For instance, the
cut-net (iii) below is translated into thec-design (iv) :

(iii)

z.6.1 ⊢ z.6.2 ⊢

⊢ z.6

z ⊢

†
⊢ z.6.1, z.6.2

z.6.0.3 ⊢ z.6.0.4 ⊢

⊢ z.6.0

z.6 ⊢

⊢ z

L P

(iv) P [L/x] = L||{6} < N >

with:
L = {6}(z).z||{1, 2} < Ω−, Ω− >

N = {1, 2}(x1, x2).† + {0}(y).(y||{3, 4} < Ω−, Ω− >

3.2.2 Petitio Principii

A typical fallacy is provided byPetitio Principii, translated bybegging the question
in English. Like this expression tells us, it is the rhetorical figure which consists in
smuggling the conclusion into the wording of the premises, thus begging or avoiding
the question at issue in the argument(Schipper and Schuh, quoted by [Hamblin 70]).
In other words, a given argument depends on what it is trying to support, and as a result,
the proposition is being used to prove itself.
We characterise such a fallacy in Ludics as a block where there are no loci on which a
continuation of the interaction can be performed. Theloci that the intervention should
create are in fact never available. Like if, during a game, your turn was never given
back. An example is provided by:

(2) Your daughter became dumb because she lost the use of language
Let us take the following notations:
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- E , E1, E2 andE′ respectively denote the utterancesyour daughter became dumb
because she lost the use of language, your daughter became dumb, she lost the use of
languageandyour daughter lost the use of language because she became dumb;

- e, e1, e2 ande′ denote the names of actions which are respectively associated with
them.
Let us describe below the designE associated withE:

• E = y||e1 < N > where:

- y is the channel where an answer may be plugged in;

- e1 is the first positive action and corresponds to the claimE1: your daughter
became dumb;

- the designN is associated with the justification ofE1.

• to makeE more explicit, we need to precise the designN which contains as a
justification forE1, the argumentE2. We have :N = e2(x).E ′. Indeed the
negative actione2(x) gives an account of the position which is ready to support
E2: she lost the use of language. Moreover we may forecast that such a support
would be the utteranceE′: your daughter lost the use of the word because she
became dumb, with which is associated the designE ′.

• Clearly the designE ′ is equal toE except that the positions ofe1 ande2 are
exchanged. Precisely,E ′ = x||e2 < N ′ >, whereN ′ is e1(z).E ′′, andE ′′ =
E [z/y], and so on ...

Finally the designE associated with the utteranceE: your daughter became dumb
because she lost the use of languageis:

Ey = y||e1 < e2(x).x||e2 < e1(z).z||e1 · · · >>

The designE is infinite. Nevertheless, we may give a finite presentation of it, by means
of a finite generatorG (see in appendix):

G = ({s+

1 , s+

2 }, {s
−
1 , s−2 }, l, {s

+

1 }), where the functionl is defined as follows:

l(s+

1 ) = y||e1 < s−1 >
l(s−

1
) = e2(x).s+

2

l(s+

2 ) = x||e2 < s−2 >
l(s−2 ) = e2(y).s+

1

The design-like presentation highlights the characteristics of “petitio principii”:

• the design is infinite; the loci to which the addressee could stick oneself are never
available.

• the design’s generator gives an account of the circularity of the argument.
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3.3 Transfering the premises from a locus to another one

A well known work on what is sometimes namederistic, according to the ancient
Greek wordEris meaning ”wrangle” or ”strife”, is the famousThe Art of Always Being
Right written by Schopenhauer. In this book, the German philosopher gives several
”stratagems” according to which it is easy to win a controversy against any opponent.
For instance, the ”fourth stratagem” is the following :

Make the opponent to admit the premises of a proposition, in ahidden
way during the conversation. Once it is visible that your opponent has
conceded all the necessary premises, play the sentence implied by these
premises.

Let us build the design associated with a speaker who argues in favour of his or her
thesis by refering to premises already accepted by the otherspeaker.
Let us use the following notations :

• the speaker is referred to by ”player” orP

• the addressee by ”opponent” orO.

• the utterances corresponding to the premises already accepted byO are denoted
A andB.

• we assume that the claim made byP by using the premises already accepted by
O, is similar to the followingE: SinceA andB (that you accepted) implyC,
you will agree thatC.

• we denote byI the utteranceA andB implyC.

• the namesa, b, e, i are respectively associated with the utterancesA, B, E et I,
and their arities will be made precise below.

We associate withE the following design:

E = y||e1 < a(xa).A, b(xb).B, i(xi).I >

which is built as follows:
- y is the channel where an answer may be plugged in;
- e1 is the first positive action : it consists in the claim of the thesisC. This action

is ternary since it suggests that the interaction may continue on each element which
constitutes the logical argumentation: the two premises and the implication.

- thenP is ready to continue the interaction on three channels, represented by three
negative actionsa(xa), b(xb), i(xi).

- the designsA andB respectively associated with the support of the premisesA
andB are already built.

Let us consider the following simplified case: during previous dialogues, the ut-
terancesA andB were asserted byP and immediatly accepted byO. We can then
represente each of them by some design reduced to an elementary positive action, re-
spectively :xa||a < Ω− > andxb||b < Ω− >. We give an account of the transfer of
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these premises so that they become arguments of the thesisC by the fact thatA etB
are respectively obtained on the following way:

A = Faxxa
||a < Ω− > etB = Faxxb

||b < Ω− >

whereFax is an infinite design generated by the following finite4 generator:

({su}u∈U , {sN}, l, sN) where :

l(sN ) = Σu∈Uu(~xu).su, l(su) = y||u < sN , . . . , sN > wheny /∈ ~xu.

ThenFaxya
is the negativec-design:

Σu∈Uu(x1, . . . , xn).(ya||u < Faxx1
, . . . , Faxxn

>)

with which the normalisation of a positive designD = xa|| . . . givesD[ya/xa].
SinceO knows that the designsxa||a < Ω− > andxb||b < Ω− > are winningP ’s
designs, his or her only possibility to successfully continue the dialogue is to use the
channeli(xi). Indeed the subdesignI is still partial at this step5. If O has nothing to
oppose toI, then s/he looses: s/he is obliged to play the daı̈mon.

Let us underline that such an interaction may be taken into account because we are able
to express cuts inside the representations of the speech turns. These internalized cuts
allow us to keep the information coming from previous exchanges and to be able to
reuse it in the future.

4 Ludics and ”semantics”

4.1 On Natural Language Semantics

In the previous sections, we were concerned byrhetoric, that is the way in which lan-
guage is used according to a persuasion goal. Rhetoric is a question ofpositionsthat
speakers occupy in their interlocutory space. In particular, we saw in the previous
section how a speaker is bound to make use of the other speaker’s expectations. In
contrast with rhetoric (which takes place in fact inside what is nowadays calledprag-
matics, that is the study of theuseof language in context),semanticsis supposed to
deal with the proper content of a sentence (more or less independantly of its context).
Traditional Formal Semantics does as if there existed an objectivable sentence mean-
ing which could even be reduced to truth conditions, according to Frege’s program.
Another viewpoint amounts to consider that :

• meaning is always decided in context, that is, more precisely, in dialectical ex-
changes,

• meaning is always determined according to reciprocal expectations coming from
two speakers (or more) in a dialogue

4provided thatU (a set of names associated with some utterances) is finite
5that is it has still some missing rule over it
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Of course, when dealing with content, we are obliged to startfrom some primitive
meanings associated with words (lexical meaning) and from primitive ways in which
those contents may be combined. For instance, when utterring there is a cat on the
mat, we refer to primitive concepts like those ofcat andmat, and also on relational
concepts likebeing on... At a first glance, we may ignore what there is exactlyin-
side those concepts! Tarskian semantics would say :cat is the concept defined by
the function which assigns 1 to every individualx which is a cat, and 0 to the other
individuals... We don’t think this kind of view bring anything to the comprehension of
the semantics of natural language. If we try to reason more inaccordance with modern
neurocognitive views, we should prefer to say thatcat is that part of the brain which
reacts when the word is heard or when a real cat crosses the road in front of us... But
we can also leave the door open to other conceptions : in fact,for us,cat will be...
a set of designs, (orbehaviour) seen as the set of all designs which interact the same
way with regards to the other designs inside our situationalrepresentation of the world,
at the moment we have an exchange about cats with other people. Of coursecat as
a notion may be more or less deepened in a given situation : it may suffice for us to
identify a cat simply by a single feature (its miewing, its whiskers or else...), or we can
be in a situation where we expect more, something like aproof that there is a true cat!
Here the separation theorem is fundamental. It states that designs may be ordered in-
side the same behaviour. Very long designs may inhabit the behaviour associated with
the notion, as well as shorter and more branching ones.

We propose here a conception ofinteractive meaningbased on Ludics. At a metaphoric
level, in the same way a design is defined by its orthogonal (according to the separation
theorem), we postulate that the meaning of a sentence is given by its dual sentences
: that is the sentences with which the interaction converges. Moreover, we claim that
Ludics also offers a framework in which we may modelize the ”meaning” of a sentence.

We follow below an example which illustrates a classical problem of ambiguity (scope
ambiguity).

4.2 Meaning through dual sentences

Let us consider the statement (from now on denoted byS) :
(4) Every linguist speaks some african language

Usually two ”logical forms” can be associated with such a sentenceS, depending on
whethersomehas the narrow or the wide scope. Namely:

S1 = ∀x(L(x) ⇒ ∃y(A(y) ∧ P (x, y)))
S2 = ∃y(A(y) ∧ ∀x(L(x) ⇒ P (x, y)))

whereL(x) means“x is a linguist” ,A(y) means “y is an african language” andP (x, y)
means “x speaks y”.
When ”some” has the narrow scope, we assume that the logical form converges with
the LF of sentences like:

(1) There is a linguist who does not know any african language.
(2) Does even John, who is a linguist, speak an african language ?
(3) Which is the African language spoken by John ?
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On the opposite, if ”some” has the wide scope, the logical form converges with :
(4) There is no african language which is spoken by all the linguists.
(5) Which african language every linguist speaks ?

4.3 Meaning as a set of justifications

In this section, for the sake of brevity, we shall discard theL(x) part of theS-formulae,
simply considering the following formulae:

S′
1 = ∀x∃y(A(y) ∧ P (x, y))

S′
2 = ∃y(A(y) ∧ ∀x P (x, y))

We realize the idea according to which meaning is equated with a set of dual sentences
by associating withS’s meaning a set of designs. These designs will be seen asjustifi-
cationsfor S, that is the supports of potential dialogues during which a speakerP can
assert and justify the statementS against an adresseeO who has several tests at his/her
disposal.
Let us denote byE such a design. We can write it as :

E = y||e1 < N > or E = y||e2 < M >

wherey is the channel by which the interaction is performed,e1 (resp.e2) is the name
associated withS when ”some” has the narrow scope (resp. the wide scope) andN
(resp.M) corresponds to an expected interaction.
Let us focus onN . It may be written :

Σel∈Lel(~x).El

whereEl is a justification ofEl : the linguistl speaks an african language, and theel’s
are the names associated with those utterances.
Let us then exploreEl. If a is the name associated with the utteranceA: F is the african
language thatl speaks, the designsA1 andA2 are justifications of, respectively,A1:
F is an african languageandA2: l speaksF . We may write :

El = x||a < A1,A2 >

Example : We may have:N1= a1(x1).(x1||∅) andN2= a2(x2).(x2||∅). In such a case
the locutor justifiesA1 andA2 by saying that there aredataswhich justify them.
Finally we obtain as a first example ofS’s justification:

E0 = y||e1 < Σel∈Lel(~x).(x||a < a1(x1).(x1||∅), a2(x2).(x2||∅) >) >

which may be read as follows:

• P assertse1. The positive action ise1

• Then he is ready to listen objection for every linguistl (the negative actions
el(~x)).

• For every linguistl P is able to exhibit some languageF , arguing thatF is an
african language andF speaksl. This is the positive actiona.

13



• Lastly, if O had still some doubts about one of these two claims (expressed by
the negative actionsa1(x1) anda2(x2)), P could continue to give justifications,
but here, s/he asserts that they are provided by mere datas (∅).

Remark : The designE0 is built in order to normalize with a design associated with
an attempt to negate it : ”There is some linguist which doesn’t speak any african lan-
guage”. We could also find other designs as justifications forS with its first reading,
for instanceO could ask to check ifl really speaksF , if F is really an africal language
and so on ...
Example :
The following design would also be convenient :

E = y||e1 < Σel∈Lel(~x).(x||a < Ω−, Ω− >) >

It differs from the previous one by the fact that it doesn’t plan to justify the statementA:
F is the african language thatl speaks. In such a case, a counter design may normalize
only if it plays the daı̈mon againtsP ’s actiona.
The following one is still a design that could be convenient :

E1 = y||e1 < Σel∈Lel(~x).(x||a < a1(x1).(x1||∅), a2(x2).(x2||g < N1,N2) >) >

Here, instead of justifyinga2 by a data,P goes deeper and gives a more detailed justi-
fication, for exampleG: l spent his childhood in Tunisia and went to a local school,N1

andN2 (not detailed here) are the subdesigns associated with the underlying utterances
of G.
A first and rough approximation of the meaning of the sentencecould therefore be a
set of such designs, which are all supports of potential dialogues. In this case, ifS1

denotes the set of designs representing the first reading ofS and if S2 denotes the set
of designs representing the second one, the set of designs representing the meaning of
S is the union of these two sets :S = S1 ∪ S2.

4.4 Meanings as behaviours (from designs to proofs)

The concept ofbehaviour(see the Appendix) will be the key concept. Actually, it is
by its means that we may recover the notion offormula.
Let us recall from the Appendix that a behaviour is aset of designs closed by biorthog-
onality, that is a set of designs which have the same behaviour with regards to normal-
ization with the other designs. Generally speaking, a behaviour is the orthogonal of
some set of designs. The behaviour generated by a designD is D⊥⊥. By associating
the meaning of an utterance with a behaviour, we get, in our interactive setting, a coun-
terpart to the more usual notion of a ”logical form” associated with a sentence.
The entire meaning of the sentence (4) above is given an account as a behaviourand
as a linear formula expressed inHSLL, thehypersequentialized polarised linear logic
(see the Appendix). InHSLL, at a first glance, formulaeS1 andS2 can be expressed
as :

S1 = ∀x L(x) −◦ ∃y(A(y) ⊗ P (x, y)))
S2 = ∃y A(y) ⊗ ∀x(L(x) −◦ P (x, y)))
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If we still concentrate ourselves on the reduced forms :
S′

1 = ∀x ∃y(A(y) ⊗ P (x, y))
S′

2 = ∃y A(y) ⊗ ∀x P (x, y))
and If we go back to the designs defined in the previous section, we see thatE0, E1 and
E share the same series of initial steps. We may be easily convinced that any design
which could be a justification forS would begin the same way. This suggests that they
belong to the same behaviour, or in other words, that each of them may be seen as an
attempt to prove the same formula, namely the formulaS = S′

1⊕ ↓ S′
2 whereS′

1 and
S′

2 are given above, and where↓ is used to deal with the subformulaS′
2 separately.

Here is an attempt to proveS′
1:

E =

Dl′

...

↓ A⊥(F ) ⊢ ↓ P⊥(l, F ) ⊢

⊢ ∃y(↑ A(y)⊗ ↑ P (l, y))

Dl′′

...

(∀x∃y(↑ A(y)⊗ ↑ P (x, y)))⊥ ⊢

Because this proof-attempt can be viewed as adesign(let us recall from the Appendix
that a design can be seen, in a complementary way, in games terms as well as in proof
terms), we are allowed to consider thebehaviourthat it generates. Let us call itC. In
the sequel, we will try to refine this behaviour, since for thetime being its members
converge with a lot of designs.
We have to specify the meaning ofA(y) and ofP (x, y). They will come from the
interactionsthey have with other designs.
Incidentally, it may be interesting to notice what would be the behaviour generated by
the whole formulaS1:

E ′ =

Dl′

...

↓ A⊥(F ) ⊢ ↓ P⊥(l, F ) ⊢

⊢↓ L⊥(l), ∃y(↑ A(y)⊗ ↑ P (l, y))

Dl′′

...

(∀x(↑ L(x) −◦ ∃y(↑ A(y)⊗ ↑ P (x, y))))⊥ ⊢

We leave to the reader to check that thisE ′ converges with the followingD:

∅
⊢ L(l)

↓ L⊥(l) ⊢

†
⊢↓ A⊥(F ′), P⊥(l, F ′)

†
⊢↓ A⊥(F ), P⊥(l, F ) ...

∀y(↑ A(y) –◦ ↓ P⊥(l, y))⊥ ⊢

⊢ ∃x(↑ L(x) ⊗ ∀y(↑ A(y) –◦ ↓ P⊥(x, y))

that we may interpret in the following way:

• the opponent is ready to accept any argument from the proponent according to
which some language is really an african language and the linguist s/he has cho-
sen speaks it

• but s/he is not ready to discuss the fact thatl is a linguist
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Going back to the simplified version, we have a convergence ofE simply with:

D′ =

†
⊢↓ A⊥(F ′), P⊥(l, F ′)

†
⊢↓ A⊥(F ), P⊥(l, F ) ...

∀y(↑ A(y) –◦ ↓ P⊥(f, y))⊥ ⊢

⊢ ∃x(∀y(↑ A(y) –◦ ↓ P⊥(x, y))

Therefore,E ⊥ D′, and any design which is orthogonal toD′ belongs toC. We note
that:

• E is minimal with regards to the justifications for atomic statements: itstops
beforeexploring the componentsA andP . In an interaction as the one seen
above,A andP are simply assumed to be true formulae, they could be replaced
by the negative true formulaT6. Moreover,E ′ is more explicitly formulated as
the bi-orthogonal of (the attempt of proving)∀x ∃y(T ⊗ T).

Then, we may decide to go deeper and to view the statementsA(F ) = F is an african
languageand P (l, F ) = l speaksF as themselves formulae which are waiting for
justifications. In this case, we use the shift operator↑ (cf. the Appendix) in order to
separate them in the course of the proof. They may be viewed asmere facts, that is
kinds ofpropositions, or datas(which happens in the case of the designE0), or they
may also be viewed as more elaborate representations which can be still decomposed
(this is the case of the designE1). In both cases,↓ A(y) and↓ P (x, y) admit proofs
(either trivial as if they were simple axioms, or more elaborate).
Seen as proofs,E1 andE0 obviously coincide on the initial steps (starting from the
bottom) but differ aboveP (l, F ). Such initial steps are :

Dl′

...

⊢ A(F )

↓ A⊥(F ) ⊢

...
⊢ P (l, F )

↓ P⊥(l, F ) ⊢

⊢ ∃y(↑ A(y)⊗ ↑ P (l, y))

Dl′′

...

(∀x(∃y(↑ A(y)⊗ ↑ P (x, y))))⊥ ⊢

⊢ S

The attempts to proveA(F ) and P (l, F ) give rise to two newbehaviours(the bi-
orthogonals of these attempts), that we shall denote respectively : A(F ) andP(l, F ).
The designsE0 and E1 finally belong to the same behaviour:∀x(∃y(↑ A(y)⊗ ↑
P(x, y)))7, provided that, for instance,A(F ) = 1

8 andP(l, F ) = 1 ⊕ {E1}⊥⊥ (the
later is essentially the union of the two behaviours1 and{E1}⊥⊥).
Finally, going back to the complete statementS, its meaning is given by the behaviour:
S, which corresponds to theHSLL formula (still denoted byS) :

6Let us recall thatT is the neutral element of the negative additive&
7Vertical arrows are shift operators - see the Appendix - which make the formulae negative ones, a

condition that is necessary if we wish to respect the implicit convention inHSLL according to which
formulae are decomposed into maximal blocks of alternate polarities.

8The behaviour1 associated with the positive linear constant1 contains two designs:
∅

⊢ ξ and
†

⊢ ξ.
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S = (∀x↑L(x) −◦(∃y ↑A(y)⊗ ↑P (x, y)))) ⊕ ∃y ↑A(y) ⊗ (↑L(x) −◦∀x ↑P (x, y))).

And therefore

S = (∀x↑L(x) −◦(∃y ↑A(y)⊗ ↑P(x, y)))) ⊕ ∃y ↑A(y) ⊗ (↑L(x) −◦∀x ↑P(x, y))).

Let us recall a behaviour may be viewed as a set of justifications. Of course, each
justification ofS may be found in the behaviourS, provided that it is large enough.
Analyzing things more deeply, we discover that in fact,S may be viewed as afamily of
behaviours. This results from the fact that, if a behaviour, by itself, always contain the
designs less defined as any of its designs, it does not containgenerally more defined
ones. Of course we have always the ability to consider those more defined designs, but
each time we refine a design, we get a new behaviour, (which contains the previous
ones). Larger behaviours support more justifications than smaller ones.

5 Conclusion

Intuitively speaking, Ludics allows us to develop a new viewpoint, according to which
very various objects may be assigned to sentence (and word?)meaning. These objects
are technically characterized asbehavioursthat is, asstablesets (with regards to bi-
orthogonality). We don’t need to know what is theessenceof meaning (by entering
into some kind of metaphysics), because those objects are defined by their reactions
with regards to other ones they are interacting with. Moreover, we may make the depth
of the characterization vary, according to aseparationtheorem. As pointed out by
C. Faggian ([Faggian 2006]), only the properties of these objects that can be tested
by means of interaction with objects of the same kind can be observed, they are the
observables.
At the low level of sentence interpretation, there are atomswhich are simply facts,
or datas. They can be replaced by1, the neutral element of the⊗ of the algebra of
behaviours. In such areductionof meaning, sentences the analysis of which ends up
on those atoms are said to betrue. Actually, a design which does not use the daı̈mon
can be seen aswinning. By the completeness theorem, that amounts to say that it canbe
translated into a proof of the statement it argues for, and therefore this statement can be
seen as a true one. This provides us with a possible reductionto thetruth-conditional
paradigm.
At a higher level of interpretation, sentence meaning is seen as afamilyof behaviours,
parametrized by the elementary behaviours that are involved in the sentence : this
is in fact the counterpart of the traditional idea, in Possible Worlds Semantics, of a
proposition as a set of possible worlds. Here, a propositionis a behaviour, which is
itself defined according to elementary ones associated withatomic sentences. We may
for instance definenecessityas truth for any fine-grained exploration of the behaviours
associated with atomic sentences. It is probably a notion ofnecessityslightly different
from the usual one:Necessarily pdoes not mean thatp is true ”by essence”, but thatp
could be defended against any kind of objection. Let us notice that this allows to grasp
the difference between (5) and (6) below:

(5) it is necessary that Bill be the culprit
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(6) Bill might be the culprit
For (5) : for any objections formulated against the idea thatBill be the culprit(that is,
for any fine-grained behaviour associated with that idea), there is a winning design in
favour of the idea. For (6), it suffices that there is a winningdesign against one current
argument against the idea.
We conclude from that that the Ludics viewpoint is not totally orthogonal to the clas-
sical one, in that it should be possible to express in it most of the distinctions that the
classical view is able to draw. Nevertheless, we must emphasize the following points:

• In Ludics, formulae are not the primitive objects. The meaning of a sentence is
thus assigned an object which is nota priori closed : the meaning of a sentence
may bemore and more refined. In particular, the order between designs given
by the separation theorem enables one to explore more and more precisely the
argumentative potential of the sentence.

• Ludics is built with an explicit attention given to the ”logical frontier” (what falls
inside logicversuswhat falls not). Logical concepts like formulae, proofs and
connectives are defined in a world which is larger than the strict logical word (let
us remember that we haveparalogismslike the däımon, and counter-proofs in
that world!). This feature may be used to formalize aspects of meaning which
don’t directly deal with Logic, like it is the case in pragmatics, dialectic and
rhetoric, as seen in the first part of this paper.

• Ludics also refers to the possibility of playing on various interpretations of log-
ical concepts :localizedvsdelocalized(or spiritualist in Girard’s sense), where
we see an implementation of the well known distinction between tokensand
types(see [Strawson 50]). The same sentence can be viewed (insidethe same
framework) as a token - when seen as an utterance made in a given context - as
well as a type - when seen as delocalized and understood independently of any
context. Normalization withFax makes the communication possible between
the two.

• Ludics also enables us to deal withdynamicsfor free, like we saw it in the first
part of this paper. This feature is particularly highlighted in the use ofc-designs,
which includecutsand therefore a procedure of normalization which is similar
to β-reduction. In this reduction ofc-designs, arguments which were initially put
at some locations may be displaced in order to play the role they are expected
to have in an argumentation, thus ensuring the communication from tokens to
types.

Finally, we point out the harmony there is between this conception and the neuro-
cognivist views according to which meaning is a question of activation of neuron sets,
which are always specific to each mind/brain but are such thattransfer is always avail-
able from a specific brain to another one. Reproduction of meaning in the dialogue
activity is thus made similar with (and perhaps even extends) reproduction of cells in
the biological world.
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6 Appendix A: a very short presentation of Ludics

6.1 Ludics in a nutshell

Ludics is a recent theory of Logic introduced by J.-Y. Girardin [Girard 01]. Here we
don’t give the entire definitions of the core concepts of Ludics but we just give an
account of the objects we use in this paper.

6.1.1 Designs

At a first glance,designslook like proofs. In fact, they come from a deep study of
proofs and their interaction. It was discovered already during the nineties that proofs
of Linear Logic could be decomposed into blocks of opposite polarities (positive like
for ⊗ and⊕ steps, negative like for& and℘ steps). That opened the field to a polarized
and focalized logic. In such a frame, blocks of a given polarity are reduced to only one
step : it is as if a synthetic connective (involving several premisses, not necessarily one
or two) was used at each step. It is possible in such a frame to make confrontations
between polarized objects : we can think of an attempt to prove a statement vs an
attempt to prove the contrary. At the basis of each attempt, there is a sequent, but both
bases have opposed polarities, that is one is positive (trying for instance to prove⊢ P )
and the other negative (trying to prove⊢ ¬P or P ⊢).
Because of the multiplicity of premisses, the calculus, using formulae and the usual
connectives of Linear Logic is calledHypersequentialized Linear Logic(HSLL). This
calculus contains a large number of rules, even if we may present it by using rule
schemata. An overview is given infra.
When opposing two proofs one against the other, it may happenthat one of the two be
a real proof. In this case, the other one is of course not a proof but what we may call
a counter-proof. Proofs and counter-proofs together are calledparaproofs. Amongst
paraproofs, there are of course singular objects which are real counter-proofs: they are
defeated during the confrontation against a real proof. Theprototype of these objects
is the one step paraproof :

†
⊢ Γ

whereΓ is a sequence of formulae possibly empty, and† is the special positive rule
calledDaı̈mon. For a proof-searcher, to make this step in a proof amounts toadmit his
or her failure. In Ludics, this has the meaningI’m giving up. It happens that this is the
only paralogismthat Ludics allows.
HSLL may be displayed in a standard way, using only positive formulae : the negative
ones are simply put on the left-hand side of the sequent to prove (or to refute). All the
sequents which enter the game are therefore of the general form Γ ⊢ ∆, whereΓ and
∆ may be empty andΓ contains at most a formula. These sequents are therefore called
forks, and the negative part (the left-hand side) is called thehandle. Elements of the
right hand side are theteeth. If Γ is empty, the fork is said to be positive, if not, it is
said to be negative.
Going to Ludics strictly speaking amounts to get rid of formulae in favour of only their
adresses, calledloci. Theseloci are simply sequences of integers (orbias). Forks are
arrangements of loci, some being positive, others negative.
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From now on, if we make exception of†, only two rules are necessary, one for the
positive steps, the other for the negative ones. We have therefore :
Definition: A designis a tree of forksΓ ⊢ ∆, built by means of the three following
rules :

- Daı̈mon

†
⊢ ∆

- Positive rule

· · · ξ.i ⊢ ∆i · · ·
(ξ, I)

⊢ ∆, ξ

whereI may be empty and for every indexesi, j ∈ I (i 6= j), ∆i and∆j are discon-
nected and every∆i is included9 in ∆.

- Negative rule

· · · ξ.I ⊢ ∆I · · ·
(ξ,N )

ξ ⊢ ∆

whereN is a possibly empty or infinite set of ramifications such that for all I ∈ N , ∆I

is included in∆.

Let us mention that is is usual to interpret the positive ruleas a positive choice made by
a player : s/he can make a ”true” choice, like it is the case when we use the⊕-rule, or
s/he can keep several issues simultaneously, like we do whenusing the⊗-rule. In any
case, s/he selects alocus, considers it afocus(the focus of the action), and s/he selects
a ramification, that is a set of adresses on which the focus is distributed.
Similarly, the negative rule is interpreted as a more passive step, since thefocusis al-
ready determined (it is the only locus which occurs on the left-hand side of the negative
fork). Moreover, the set associated to that rule is not a specific ramification, but a set of
ramifications. In our pragmatic, or rhetorical, view, it is as if the player, after making
an assertion (positive step) was waiting for an expected setof answers from his or her
co-player. In terms of proofs: the proof makes a choiceand thenpredicts the kinds of
objections that can be made in thecounter-proof. If the player wishes to achieve his
or her proof, s/he has to continue the design for each branch,each corresponding to a
possible refutation. We see here that negative steps are bifurcations in the proof-search.
Because these considerations can be held, a design may be seen also in games terms:
each player sees the paraproof s/he is presently building asa a strategy in a game in
which the goal could beavoid the däımon!.
In this other view, we see a design as a set ofpossible plays. These plays are called

9Every rule where the union of the∆i is strictly included in∆ correspond to the weakening rule (respec-
tively for negative rule when∆I is strictly included in∆).
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chronicles. A chronicle may be built from a design according to the first view. Start-
ing from the bottom, we record all the branches and their sub-branches. A branch is
necessarily a sequence of actions, some are positive and some negative (alternatively).
In order to correspond to a true design, these chronicles must satisfy some conditions
(coherence, propagation, positivity, totality).

6.1.2 Interaction

Interaction consists in a coincidence of two loci in dual position in the bases of two
designs. This creates a dynamics of rewriting of the cut-netmade of the designs, called,
as usual,normalisation. We sum up this process as follows: the cut link is duplicated
and propagates over all immediatesublociof the initial cut-locusas long as the action
anchored on the positive fork containing the cut-locus corresponds to one of the actions
anchored on the negative one. The process terminates eitherwhen the positive action
anchored on the positive cut-fork is thedäımon, in which case we obtain a design with
the same base as the starting cut-net, or when it happens thatin fact, no negative action
corresponds to the positive one. In the later case, the process fails (ordiverges). The
process may not terminate since designs are not necessarilyfinite objects.
When the normalization between two designsD andE (respectively based on⊢ ξ and
ξ ⊢) succeeds, the designs are said to beorthogonal, and we note:D ⊥ E . In this case,
normalization ends up on the particular design :

[†]
⊢

Let D be a design,D⊥ denotes the set of all its orthogonal designs. It is then possi-
ble to compare two designs according to their counter-designs. We setD ≺ E when
D⊥ ⊂ E⊥.

The separation theorem [Girard 01] ensures that this relation of preorder is an order,
so that a design is exactly defined by its orthogonal.

6.1.3 Behaviours

One of the main virtues of this ”deconstruction” is to help usrebuilding Logic.

• Formulae are now some sets of designs. They are exactly thosewhich are closed
(or stable) by interaction, that is those which are equal to their bi-orthogonal.
Technically, they are calledbehaviours.

• The usual connectives of Linear Logic are then recoverable,with the very nice
property ofinternal completeness. That is : the bi-closure is useless for all linear
connectives. For instance, every design in a behaviourC ⊕ D may be obtained
by taking either a design inC or a design inD.

• Finally, proofswill be now designs satisfiying some properties, in particular that
of not using the daı̈mon rule.
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6.2 Thec-designs

In [Terui 08] K. Terui proposes an alternative formulation of Ludics which is motivated
by stakes of “developing a monistic, logical and interactive theory for computability
and complexity”. In order to follow such a program, K. Terui modifies and extends the
formalism for Ludics.
We focus here on the notions ofc-designs and generators that we use in our text and
we propose a very simplified presentation of them.

6.2.1 c-Designs

Amongs the new features of thec-designs compared to the original ones of Girard let
us underline the followings:

• Instead of objects with absolute address, thec-designs may be described using a
term calculus approach. The absolute addresses are replaced by variable binding.

• Thec-designs extend ordinary designs in that they contain explicit interactions.

We then focus on some technical modification into the designsbuilding. Thec-
designs still contains sequences of alternated actions, but we may at first observe that
we have a new notion of action. Thec-designs are defined according to a signature set
A: a set of couples(a, n) wherea is a name andn is its arity. And the positive actions
are either constants:† (daı̈mon or abandon) andΩ (divergence or absence of positive
rule), or proper and specific actions (denoted bya for a given namea) while the neg-
ative actions are either variables (x, y, z,. . . ) or proper negative actions (denoted by
a(x1, ..., xn)). Secondly, designs contains also cuts which enables to consider applica-
tions in a term calculus approach. Let us underline that in such a term calculus , we do
not have a unique application but as many applications as elements in a signature set
A. Then the terms orc-designs are co-inductivey defined:

• The positivec-designs are:P = Ω | † | N0||a < N1, . . . , Nn >

• The negativec-designs are:N = x | Σa∈Aa(~x).Pa

The positive designs really containing a cut are designsN0||a < N1, . . . , Nn > when
N0 is not a variable. In such a case the cut may be seen as an application in the
following sense: ifN0 contains a subterma(~xa).Pa then we have to perform the ap-
plication (Pa)N1 . . .Nn. Precisely, in such a caseN0||a < N1, . . . , Nn > reduces
into Pa[N1/x1, . . . , Nn/xn]. Otherwise, if there is no subterma(~xa).Pa in N0 (or,
equivalentely, ifN0 contains the subterma(~xa).Ω) the interaction diverges.
WhenN0 is a variable thec-design is said to be a cut-free design.

Let give as an instance ofc-design the one corresponding to theFax. It is a nega-
tive c-design recursively defined as follows:

Faxy = Σa∈Aa(x1, . . . , xn).(y||a < Faxx1
, . . . , Faxxn

>)
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6.2.2 Generators

K. Terui introduces in [Terui 08] design generators that provide a means to finitely de-
scribe infinite designs.

A generator is a triple(S+, S−, l) whereS+ andS− are disjoint sets of states and
l is a function defined onS = S+ ∪ S− satisfying the following conditions:

• Fors+ ∈ S+, l(s+) is eitherΩ, † or an expression of the form

s−0 ||a < s−1 , . . . , s−n > such that thes−i ’s belong toS−.

• Fors− ∈ S−, l(s−) is either a variablex, or an expression on the formΣa∈Aa(~x).s+
a

such that thes+
a ’s belong toS+.

A pointed generator is a quadruple(S+, S−, l, sI) where(S+, S−, l) is a gener-
ator andsI ∈ S.
We say that(S+, S−, l, sI) generates ac-design calleddesign(S+, S−, l, sI).

A c-designD is finitely generated if it is generated by a pointed generator which
has finitely many states, and wheneverl(s−) = Σa∈Aa(~x).sa, all but finitely manysa

have the labelΩ.

Examples:
- the pointed generator({s†}, {s}, l, s†), with: l(s†) = †, l(s) = Σa∈A.s† generates
the negative daı̈mon:Σa∈A.†.
- the pointed generator({sa}a∈A, {sN}, l, sN) with:

l(sN ) = Σa∈A(~xa).sa andl(sa) = y||a < sN , . . . , sN > if y /∈ ~xa

generates theFax.
Remark: Provided thatA is finiteDai− andFax are finitely generated.

7 Appendix B: an hypersequentialized linear calculus

We give here a short presentation of a hypersequentialized version of linear calculus,
which enables one to manipule the designs as (para)proofs ofa logical calculus.

7.1 Formulae and sequents

By means of polarity, we may simplify the calculus by keepingonly positive formulae.
Of course, there are still negative formulae... but they aresimply put on the left-hand
side after they have been changed into their negation. Moreover, in order to make para-
proofs to look like sequences of alternate steps (like it is the case in ordinary games),
we will make blocks of positive and of negative formulae in such a way that each one
is introduced in only one step, thus necessarily usingsynthetic connectives. Such con-
nectives are still denoted⊕ and⊗ but are of various arities. We will distinguish the
case where both⊕ and⊗ are of arity1 and denote it↓.
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- The only linear formulae which are considered in such a sequent calculus are
built from the setP of linear constants and propositionnal variables according to
the following schema :

F = P |(F⊥ ⊗ · · · ⊗ F⊥) ⊕ · · · ⊕ (F⊥ ⊗ · · · ⊗ F⊥)| ↓ F⊥

• The sequents aredenoted Γ ⊢ ∆ where∆ is a multiset of formulae andΓ
contains at most a formula.

7.2 Rules

• There are some axioms (logical and non logical axioms):

P ⊢ P ⊢ 1 ⊢↓ T, ∆
†

⊢ ∆

whereP is a propositionnal variable ;1 andT are the usual linear constants
(respectively positive and negative).

• The ”logical” rules are the following ones :

Negative rule

⊢ A11, . . . , A1n1
, Γ . . . ⊢ Ap1, . . . , Apnp

, Γ

(A11 ⊗ · · · ⊗ A1n1
) ⊕ · · · ⊕ (Ap1 ⊗ · · · ⊗ Apnp

) ⊢ Γ

Positive rule

Ai1 ⊢ Γ1 . . .Aini
⊢ Γp

⊢ (A11 ⊗ · · · ⊗ A1n1
) ⊕ · · · ⊕ (Ap1 ⊗ · · · ⊗ Apnp

), Γ

where∪Γk ⊂ Γ and fork, l ∈ {1, . . . p} theΓk ∩ Γl = ∅.

7.3 Remarks on Shifts

Using the shift is a way to break a block of a given polarity. Separate steps may be
enforced by using theshift operators↓ and↑ which change the negative (resp. posi-
tive) polarity into the positive (resp. negative) one. The rules introducing such shifted
formulae are particular cases of the positive and the negative one:

A⊥ ⊢ Γ
[+]

⊢↓ A, Γ

⊢ A⊥, Γ
[−]

↓ A ⊢ Γ

whereA is a negative formula.
Example In a block likeA ⊗ B ⊗ C in principle,A, B andC are negative, but if we
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don’t want to deal withA, B, C simultaneously, we may change the polarity ofB ⊗C
(which is positive) and make it negative by means of↑. We write thenA⊗ ↑ (B ⊗ C).
Compare the two following partial proofs, where (1) does notuse any shifts and (2)
uses one :

instead of (1):
A⊥ ⊢ B⊥ ⊢ C⊥ ⊢

⊢ A ⊗ B ⊗ C we get (2) :

A⊥ ⊢

B⊥ ⊢ C⊥ ⊢

⊢ B ⊗ C

↓ (B ⊗ C)⊥ ⊢

⊢ A⊗ ↑ (B ⊗ C)
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