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1 Introduction
In this chapter we try to give a flavour of Ludics, a frame developed by Jean-Yves Girard
on the basis of Linear Logic (cf [8, 9, 10]). Ludics seems to be very on purpose in a book
devoted to logics and anti-realism because it makes no assumptions on the existence of the
external world, in the sense that it does not require any ”model-theoretic” assumption (like
the evidence of a concept of ”Truth”) in order to enjoy good properties, like a special form
of completeness.
On the technical side, it may be seen as a new kind of ”semantics” for computer science :
proofs (or designs as we shall see later on) may be seen as interacting processes, a view
which is strongly relevant in today technology : computers do not have access to an exter-
nal reality by means of a relation like ”denotation”, and this remark may be extended to the
case of our minds which do not either access to such a ”reality” by some direct relation,
like it is wrongly assumed in denotational semantics.
On the philosophical side, it is the first radical attack against the traditional dualism
which opposes the syntactic aspect of logics (the ”language”) to the denotational one (”the
world”), or in other words : proof theory to model theory. One of the most famous claims
made by Girard is his slogan according to which ”the meaning of rules is inside the rules
themselves”. Of course, said like that, it seems very elliptic. In fact what Girard puts in
evidence is the geometrical structure underlying logic, so that the meaning of rules is ”to
be found in the well hidden geometrical structure of the rules themselves”.
Some of the main geometrical properties a system can have are symmetry and orthogo-
nality. To begin, we shall refer mainly to the first one because it happens that it plays an
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obvious role in logic. To say more, it seems that what makes logic to introduce deep in-
sights in other fields, like computer science, biology or linguistics relies on its dynamics
(classically expressed by the cut-elimination procedure), which is made possible because
of this geometrical property. In the cut-elimination procedure, rules interact with others,
introduction rules on the left with introduction rules on the right and the cut-rule itself may
be viewed as a symmetric rule with regards to the identity axiom.
A well established way to consider the symmetries in logic relies on the metaphor of
games. In games, symmetric positions are occupied by two players (the proponent and
the opponent) and rules correspond to each others simply by interchanging the roles of
the players. This had already been well known since seminal ideas expressed by Gentzen
(as a metaphor) and then works by Lorentz [14], Lorenzen[15], Felscher[7], Hintikka [12]
etc. but what is new in Girard’s approach is the fact that he does not want to start from a
pre-existing logic, trying to give it a game semantics, he proposes to look abstractly for
”games” having good geometrical properties, in order to recover a corresponding logic. In
any way, this is not semantics : semantics and syntax (proofs) are supposed to meet. In
order to achieve such a program, we have to abstract over syntax in the same time that we
have to concretize semantics, that means that we can no longer work with a ”bureaucra-
tic” management of symbols which consists in establishing a one-to-one correspondance
between symbols on one side and alleged ”real” entities on the other. The structures we
shall obtain (designs, see below) will keep, as their syntactic part, a kind of skeleton of
a proof, and as their semantic one, an alternation of steps (negative and positive) which
makes them immediately interpretable as strategies.
Moreover, such an approach amounts to take geometrical notions very seriously : there
are only locations, or loci ! Such a view is very promising for several fields of thought,
not only philosophy but also linguistics, or more precisely : pragmatics. Much has been
said for instance on the inability of traditional logic to handle the fact that in discourse,
utterances, even if expressed by the same type, stay different as tokens (see Hamblin [11]).
Ludics grasps the token reality of language.
As it seems obvious, such a move is a radical change with regards to the Tarskian tradition
which is based on a primitive notion of Truth, formalized in Model Theory, and for which
the ultimate foundation of validity lies outside logics. In Ludics, there is no outside ! There
are only processes which interact : we shall say that they enter normalization processes,
which may converge or diverge. Truth is replaced by a notion of winning strategy, that is
of a design which wins against any other one, and, formulae, which were already seen as
sets of their proofs in intuitionnistic logic are now replaced by ”behaviors”, that is sets of
strategies satisfying some completeness property. In this sense we can say that it provides
a pure anti-realist (or ”internal”) conception to logics.
In the following, we shall study in the first section the origins and the methodology of Lu-
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dics, insisting on anterior works (like Andréoli’s) which put the evidence on the polarity
of logical beings. Then in the second section, we shall study designs as ways of represen-
ting proofs in a more abstract way, and we shall make the link with strategies in a game
(”designs”) by means of some small (trivial) examples. In the third section, we shall re-
construct notions of traditional logic on this new base. Exactly like in intuitionistic logic,
formulae are interpreted as sets of proofs, here formulae may considered as sets of designs,
or behaviors. Finally we recover some flavour of ”truth” and ”falsehood”, but not from a
metaphysical (or essentialist as Girard currently says) viewpoint, only from a technical
one, linked to the existence of strategies. More importantly, we look at how to recover the
basic connectives from behaviors, thus giving a new interpretation to the connectives of
Linear Logic.

2 The origins of Ludics

2.1 Monism in Logics
Ludics comes from a reflection by Jean-Yves Girard on the deep meaning of logics. Tra-
ditionally, logicians live in a dualist universe : on one side there is syntax, axiomatic sys-
tems and so on, on the other side, semantics, that is, mainly, model theory. The situation
has been so at least since the time of Tarski. Van Heijenhoort, who inspired Hintikka
([13]), highlighted the opposition between two trends in the history of modern logics, one,
mainly represented by Frege, the first Russell and the Vienna Circle in his syntactic per-
iod, for whom logic is a universal language (it has no outside), the other one, represented
by Shröder, Löwenheim, Gödel and Tarski for which we may on the contrary make the
interpretations to vary by means of model theory, thus relativizing the scope of logics and
giving it the characteristic of a calculus. The second trend seems to have been overwhel-
ming during the biggest part of the Twentieth Century.
In this traditional trend, a formula, in order to be validated, must follow from a deduction,
but in order to be invalidated, a counter-model is given. In this way, proofs are opposed to
counter-models. This conception leads logicians to a constant jump between two worlds :
SYNTAX and SEMANTICS.
Since his paper On the meaning of logical rules ([8]), Girard has tried to abolish this dua-
list conception by replacing it by a monist one, in terms of which proofs no longer oppose
to counter-models, but to counter-proofs (or, if we prefer, ”refutations”), that is objects
of the very same nature. Such an enterprise looks very much like Game Theory since the
latter is based on the confrontation between two players (the proponent and the opponent),
such that one of them proposes a formula and defends it against the attacks of the other
until one of the two players has no longer moves to play.
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Game Semantics has already been proposed as a semantics for Linear Logic ([3, 1]), and
it is known that connectives of Linear Logic are well interpreted in this frame. The origi-
nality of Ludics will consist in its defining objects only starting from their behavior with
regards to each other, by means of a particular notion of orthogonality : two objects are
orthogonal when they enter a normalizing process which converges. In standard presen-
tations of logics (sequent calculus and proof-nets), this dynamical aspect shows up in the
process of cut-elimination. Even though, in ludics, the cut-rule is not expressed by an ex-
plicit rule, it is, as we shall see, ubiquitous : it resides in the mere co-presence of two
objects at the same locus. Its elimination will therefore represent the dynamical aspect of
the system.
In the Game Semantics approaches, the meaning of logical rules is already inside these
rules themselves, for instance it resides in their symmetries. We can give negation as an
illustration, which must not be interpreted as NO (by a single inversion of truth-values)
but by the exchange of the proponent and the opponent positions. Girard goes even further
by assuming that this is not a mere ”description” of an operation already given, but its
constitution itself (as pointed out by A. Pietarinen [16] who quotes Wittgenstein on that
aspect).
The position held by Girard is therefore immanentist or anti-realist, in complete opposition
with the tarskian conception which leads to a continual escape towards meta-levels when
it tries to give foundation to the concept of truth, a conception that can be seen by contrast
to the transcendantal one which is implied by this tarskian view and the need to believe in
the meta-levels if we want a foundation for the semantics of formulae.
With this new perspective, the logician may live in a homogeneous space. The embryon of
such a view may be seen in Heyting’s semantics of proofs, which can lead to the following
observations concerning the notion of test.

1. how to test (A∧B) ? by testing A or by testing B,

2. how to test (A∨B) ? by testing A and by testing B

3. how to test (A⇒ B) ? by admitting A and testing B

The notion of test appears to be close to that of negation (cf. De Morgan rules) and we
are led to the analogy : test for A = proof of ¬A. But of course, if A is provable, such a
proof cannot exist ! It is not possible to have altogether a proof of A and a proof of ¬A.
A test for A is therefore what Girard calls a paraproof. Hence the fact that, from now on,
paraproofs will be opposed to other paraproofs, only some of them becoming true proofs :
we of course don’t know which of them before making the interaction to begin.
The intuitionistic viewpoint is not the best one for developing those ideas since negation is
not involutive in it (the fact that ¬A would not pass the test would not entail the validity of
A). Girard says that it is not that intuitionism would define a bad negation, but because of
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its geometrical limitations : since the only correct meaning of negation is the exchange, this
requires the two sides of a sequent be symmetric. On the other side, the classical viewpoint
is embarrassing because of its non-constructive feature : the normalization procedure is not
confluent. Hence the idea of symetrizing the intuitionistic viewpoint and going to Linear
Logic.
Girard’s idea may be seen as an attempt to maximally abstract over syntax (in particular
to get rid of the ”bureaucratic” management of symbols) and concretizing semantics, both
moves meeting in a middle term where it remains a mere geometrical object, which is a
game. We shall then meet a notion of completeness, but of course not the same as the
tarskian one. This notion was already there in Game Semantics.

if σ is a winning strategy for the game |A|, then there exists a proof π of A
such that σ=|π|

where |A| is the game which interprets the formula A and |π| the strategy which interprets
the proof π.
This is reminiscent of many efforts made during the twentieth century to found Logics on
Game Theory ([14], [15]), but for Girard, these attempts were ad hoc : they all started from
the existing logic and then tried to establish good game rules in accordance with deduction
rules in order to assimilate provable formulae and formulae for which there exists a win-
ning strategy. Girard is looking for a notion (still of a ”game” ?) which would be simpler,
more natural and ”geometrical” (so that for instance it integrates the dynamical notion of
cut-elimination), and, for him, only then, we would be able to determine the suitable logic.
In order to fully characterize an object (like a proof) by means of its interactions with other
ones, there must be enough objects with which to interact, that is also objects which are...
not necessarily proofs ! Another way of drawing a similar conclusion consists in asking :
if proofs give winning strategies, what is there concerning the non winning ones ? In both
questions, the answer is : paraproofs, that is... false proofs ! However, if we can build false
proofs, that necessarily comes from that we accept false rules, that is : paralogisms. A new
notion of completeness arises, which as claimed by Girard, is much more interesting than
the previous one : a notion of internal completeness, according to which a set is said to be
complete if it contains all the objects needed in order to be closed by interaction.
Not any paralogism is accepted and only the least. Moreover they will have to conform to
the cut-elimination procedure too, thus limiting the kind of paralogisms that can exist.
The main paralogism Girard proposes consists in considering any sequent ` Γ as an axiom.
It is what happens when we try to make a proof in the sequent calculus : at a certain point
of the proof, we arrive at a sequent we can see that we shall not be able to prove it. At
this point, we give up, but the object we met was a paraproof, it can be distinguished by
the application of this axiom which may be understood as : ”I give up”. This rule is called
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the daimon. 1 We can see that, at this stage, ”the” logic is not yet determined. Perhaps we
shall find a known logic (intuitionistic ? classical ? linear ? affine ?) but it is not sure. Even
though Girard would be encline to choose linear logic, he does not exclude other logics
like the affine one, or even several logics. The only remaining criterion for a ”good” logic
is its behaviour with regards to cut-elimination.

2.2 Methodological considerations
If we want to interpret a proof as a strategy in a game with two players, then necessarily
must intervene somewhere the notion of polarity, which exists between the two players. J.
M. Andreoli ([2]) had already met this notion in his analyses of the proofs in Linear Logic.
He discovered that proof-search is more tractable if we content ourselves only with proofs
of a certain type, which form a complete set with regards to the provable sequents. Ac-
tually, the connectives of Linear Logic may be split in two groups which behave differently
with regards to the active formula, at each step.

– the negative connectives :
– the multiplicatives ⊥, ℘ and ?
– the additives : T , &, ∀

– the positive connectives :
– the multiplicatives : 1, ⊗ et !
– the additives : 0, ⊕, ∃

Negative connectives are deterministic and reversible. In effect, when the [℘] or the [&]-
rule is applied, there is only one way to do it, and consequently, it is always possible to
go back : no information is lost when the rule is applied. But when the [⊕] or the [⊗]-
rule is applied, there are many ways to continue the proof (always seeing the proof from

1There could be other paralogisms. Let us consider for instance a player I (Girard, p. 13) who tries to
prove `?A⊗?B. Of course, this sequent is not valid if isolated, but it could happen that for certain A and
B it is provable. Then the opponent should try to prove `!A⊥℘!B⊥, which amounts to prove `!A⊥, !B⊥

which is of course not provable in standard Linear Logic. If the player II has only the daimon-rule to
oppose, then I easily wins, but perhaps too easily because the immediate abandon of II prevents from
entering into the formula `?A⊗?B (and understand in the present case why it is valid). Therefore we have
perhaps to add other paralogisms. For instance, if we want to decompose the formula, we can be authorized
to use weakening. In this case, the player II would play `!A⊥ or `!B⊥. Other solution : (s)he could use the
Mix-rule and try to prove the two sequents `!A⊥ and `!B⊥, where the mix-rule is the following :

Γ ` ∆ Π ` Λ
Mix

Γ,Π ` ∆,Λ

(It is not accepted in classical Linear Logic whereas it is satisfied in numerous models of Linear Logic, like
coherent spaces)
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bottom to the top). In case of A ⊕ B, it is necessary to choose between continuing on A
and continuing onB, in case of the [⊗]-rule, splitting the context is not deterministic. This
entails that it will be difficult to reverse the process when a choice has been made : in the
first case, B will be forgotten if A has been chosen. in the second case, if we reverse the
rule, we obtain a false rule since any partition of the context does not fit to the expected
conclusion.
Hence the idea according to which an efficient proof-search must select at each step the
main formula so that :

– if the sequent contains negative formulae, then any of them may be chosen (at ran-
dom) and the proof may be continued in this way until there is no more negative
formula in the sequent to prove (this phase is deterministic)

– when all the negative formulae have been decomposed, a main formula must be
selected in a non-deterministic manner, but as soon as it has been selected, it is
necessary to focus on it in such a way that in the following, only subformulae of this
formula are selected, as long as the subformula is positive.

It appears that it is possible to present a proof under the form of an alternate sequence
of steps : a sequence of negative steps followed by a sequence of positive ones, followed
again by a sequence of negative steps and so on. Even better : we may consider a sequence
of steps of the same sign as a single step of that sign, consisting in applying a rule asso-
ciated with a synthetic connective.
With such connectives, and for a proof consisting in such a sequence of alternate steps,
the focalization method preserves as an invariant the fact that a sequent contains at most
one negative formula (all the negative connectives have been grouped together in the same
formula). If the active formula is positive, then all the other formulae of the sequent are
positive (if not, the negative one would have been chosen as the active formula) and all the
premisses in the application of the rule have exactly one negative formula, each of which
arises from the decomposition of the active formula. If the active formula is negative, all
the other formulae are positive and each premisse is a sequent consisting only in positive
formulae. At the beginning, we want to prove a sequent which contains a single formula,
which is conform to the invariant.
To consider the polarized proofs is particularly interesting for the analysis of the objects
which prevails in the development of Ludics and which can be summarized in the follo-
wing slogan : ”keep of the proof object only what is concerned by cut elimination”. The
relevant equivalences between proofs from the proof search point of view are also rele-
vant from the cut elimination one. The quotient of the polarized proofs realized by using
synthetic connectors is thus relevant to approximate good objects and it is exactly what
Ludics will do. Let us illustrate this matter by means of an example.
Let us consider the following equivalent LL-formulae : (A⊗C)⊕(B⊗C) and (A⊕B)⊗C
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and let us suppose we are eliminating a cut on such a formula (by putting them in in-
teraction with (A⊥℘C⊥)&(B⊥℘C⊥) or (A⊥&B⊥)℘C⊥ for instance). The proof above
(A⊗ C)⊕ (B ⊗ C) can be :

either 1 =

` A ` C

` A⊗ C

` (A⊗ C)⊕ (B ⊗ C)

or 2 =

` B ` C

` B ⊗ C

` (A⊗ C)⊕ (B ⊗ C)

The continuation of the cut elimination procedure leads to :
– eliminate one cut on ` A and one cut on ` C if the proof is 1
– eliminate one cut on ` B and one cut on ` C if the proof is 2

If we consider the other formula, namely (A⊕B)⊗C, again there are two possible proofs
above this formula :

either 1′ =

` A

` A⊕B ` C

` (A⊕B)⊗ C
or 2′ =

` B

` A⊕B ` C

` (A⊕B)⊗ C

Once again there are two possibilities :
– if the proof is 1′, continue on ` A and ` C ;
– if the proof is 2′, continue on ` B and ` C.

The proofs 1 and 1′ on the one hand, 2 and 2′ on the other hand are indistinguishable
according to the cut elimination procedure. Because ludics only preserve the information
”to continue onA and C” or ”to continue onB and C”, it will make no difference between
1 and 1’ on one side and 2 and 2’ on the other.
The following example taken from [4] will make clear the role of synthetic connectives in
displaying proofs in sequences of alternate steps.
Let us consider the formula : ((N1⊗N2)&Q)℘R where Q, R are supposed to be positive,
P = N1 ⊗N2 is positive and N1, N2 are negative. (P&Q)℘R is negative. The rule for the
synthetic connective (a synthese of & and ℘) is :

` P,R,Λ ` Q,R,Λ

` (P&Q)℘R,Λ

A focalized proof of ((N1 ⊗N2)&Q)℘R ends up like this :
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` N1, R,Λ1 ` N2,Λ2

` (N1 ⊗N2), R,Λ ` Q,R,Λ

` ((N1 ⊗N2)&Q)℘R,Λ

where we can see the alternation of steps : first a negative rule, then a positive one (here
the tensor rule). The same proof may be presented in the following way :

N⊥1 ` R,Λ1 N⊥2 ` Λ2

` (N1 ⊗N2), R,Λ ` Q,R,Λ

((N1 ⊗N2)
⊥ ⊕Q⊥)⊗R⊥ ` Λ

In this presentation, there are only positive connectives. Moreover, there is at most one
formula on the left of `.
All these observations lead us to simplifying the presentation of the calculus : we shall
consider only sequents with only positive formulae and at most one formula on the left
hand side. We have therefore only positive rules, but for each synthetic connective, we
have a left introduction rule, which is reversible, and a set of right introduction rules which
are not reversible, for instance for the synthetic connective above, which may be written
as (P⊥ ⊕Q⊥)⊗R⊥ :

` P,R,Λ ` Q,R,Λ
{{P,R}, {Q,R}}

(P⊥ ⊕Q⊥)⊗R⊥ ` Λ

P ` Γ R ` ∆
{P,R}

` (P⊥ ⊕Q⊥)⊗R⊥,Γ,∆

Q ` Γ R ` ∆
{Q,R}

` (P⊥ ⊕Q⊥)⊗R⊥,Γ,∆

the rule on the top right comes from the following deduction :

P ` Γ

` P⊥,Γ

` P⊥ ⊕Q⊥Γ

R ` ∆

` R⊥∆

` (P⊥ ⊕Q⊥)⊗R⊥,Γ,∆

We may notice (cf. Curien, p.17) that the connective isomorphic to it : (P⊥⊗Q⊥)⊕(P⊥⊗
R⊥) has exactly the same rules.
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3 Designs

3.1 Proof trees which may be infinite
If now, we would like to write all the rules for all the synthetic connectives, that would
make an infinity of rules. We therefore must content ourselves with rule schemata. And
because we cannot foresee in such schemata what will be the particular formulae, we shall
content ourselves with locations (loci), that is, the place where they are inscribed.
As a matter of example, let us take again the three rules that we stated above, concerning
the synthetic connective (P⊥ ⊕Q⊥)⊗R⊥, and that we recall here :

` P,R,Λ ` Q,R,Λ
{{P,R}, {Q,R}}

(P⊥ ⊕Q⊥)⊗R⊥ ` Λ

P ` Γ R ` ∆
{P,R}

` (P⊥ ⊕Q⊥)⊗R⊥,Γ,∆

Q ` Γ R ` ∆
{Q,R}

` (P⊥ ⊕Q⊥)⊗R⊥,Γ,∆
Let us assume that the atomic formulae are stored at various addresses, these ones being
words on N (the set of integers), and that P⊥, Q⊥, R⊥ are located at the respective ad-
dresses 1, 2, 3. Let ξ be a variable of address. ξ ? I denotes the set {ξi; i ∈ I} and ξi is
often noted ξ ? i. Then, if the formula (P⊥ ⊕ Q⊥) ⊗ R⊥ is supposed to be stored at the
address ξ, the atomic formulae P,Q,R which occur in the premisses are supposed to be
stored at the respective addresses ξ1, ξ2 and ξ3. 1, 2 and 3 thus occur as relative addresses.
Sequents are normalized, in the sense that they are written down under the form of what
Girard calls a fork, with at most one address on the left hand side. The two types of se-
quents are therefore : ξ ` Λ and ` Λ. The proofs of sequents of the first (resp. second)
type are said to have a negative (resp. positive) base.
Thus the first rule on top left is a negative base rule (the positive connective is introduced
on the left), whereas the two others are positive rules (the positive connective is introduced
on the right). A negative rule is therefore a rule with several sequents as premisses, each
one containing several addresses on their right (and nothing on their left), these sequents
are of the form ` ξ ? J,ΛJ . A positive rule is a rule with several premisses, each one ha-
ving one address on its left. Those premisses are therefore of the ξ ? i ` Λi form.
The three rules above become :
` ξ1, ξ3,Λ ` ξ2, ξ3,Λ

(−, ξ{{1, 3}, {2, 3}})
ξ ` Λ

ξ1 ` Γ ξ3 ` ∆
(+, ξ, {1, 3})

` ξ,Γ,∆

ξ2 ` Γ ξ3 ` ∆
(+, ξ, {2, 3})

` ξ,Γ,∆
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and the general schemata of the rules are the following :

POSITIVE RULE

... ξ ? i ` Λi ...
(+, ξ, I)

` ξ,Λ

NEGATIVE RULE

... ` ξ ? J,ΛJ ...
(−, ξ,N )

ξ ` Λ

where I and J are finite subsets of N, i ∈ I , with the Λi pairwise disjoints, N is a set
(possibly infinite) of finite subsets of N, each J of the negative rule being an element of
this set, all the ΛJ are included in Λ, and moreover each base sequent is well formed in the
sense that all addresses are pairwise disjoint.
To that, we add the daimon :

†
` Λ

The fact that these rules don’t refer to any particular formula may be glossed as saying that
they are not typed. On this viewpoint, we understand that this system may be compared
with the non typed λ-calculus.
The (para)proofs which are drawn in this system are called designs. A design is therefore
an alternate sequence of negative and positive rules, with occasionally a daimon to close
it, but a design may be infinite (as we shall see later on, a dispute may be endless !). In
fact, there is an infinity in both dimensions : in breadth and in depth. There may be infinity
In breadth also because the negative rule admits cases where there would be an infinite
amount of J (infinite branching).
The general form of a design is thus the following one :

...

...

...

` ξk11 ? J2,ΛJm ...
(−, ξk11 ,N2)

ξk11 ` Λi1

...

ξk12 ` Λi2 ...

...

ξk1j
` Λij

(+, ξk1 , J1)
` ΛIk

, ξk1 , ξk2 , ..., ξknk
...

(−, ξ,N )
ξ ` Λ

At the first step, it is assumed thatN = {I1, ..., IN1}. Only the positive sequent associated
with k, that is relative to the choice of Ik in N , has been represented as a premisse. It
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contains the elements k1, k2, ..., knk
. At the second step, we have a positive rule for each

premisse of the previous step, chosen for instance in taking as the focus the first ξkl
, that is

ξk1 , and that gives for each a sequence of negative premisses indexed by a set J1, which,
itself, contains the elements 1, 2, ..., j. The Λip of the numerator absorb the ξkl

which have
not yet been used as foci (but they will do !). Then, the design is continued by making the
steps to alternate.
The positive rule may be interpreted as :

– the player selects a locus ξ to pursue the interaction, and
– from this locus, he asks a finite set of questions i

and the negative rule as :
– after having asked a question, the player considers a directory of possible answers
N from his/her partner

As we have already noticed, there is no axiom rule in this system. It is replaced by Fax,
which allows to make a correspondance between ”identical” formulae occurring at dif-
ferent addresses (therefore not identical properly speaking, but simply ”equiform”). Fax is
the design which displays the proof of :

A ` A

by performing all the possible decompositions of the formula A. It has therefore the recur-
sive definition :

Faxξ,ξ′ =

... Faxξi1,ξ′i1 ...

...ξ′ ? i ` ξ ? i...
(+, ξ′, J1)

... ` ξ ? J1, ξ
′ ...

(−, ξ,Pf (N))
ξ ` ξ′

3.2 Designs as strategies
A system where objects are alternate sequences of moves with different polarities looks
very much like a dialogue. Positive steps are ”moves” of one participant (or player) and
negative ones are those of the other player. More traditional approaches in Game Semantics
(like Hintikka’s school) or in dialogical logic already established a dichotomy between
connectives in classical (or intuitionistic) logics. They belong to two different classes :

– the active ones : those for which the rule in dialogue consists in an active choice
made by the proponent (∨, ∃)

– the passive ones : those for which the associated rule consists in a passive choice,
that is a choice made by the opponent (∧, ∀)
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We retrieve the same dichotomy in Linear Logic : the active ones are the positive ones and
the passive ones are the negative ones.
As we have seen, at a negative step, the proof displays a family of subsets of N, N , and
at the following positive one, a J ∈ N is selected. On the dialogical view, the positive
steps correspond to moves played by the proponent and the negative ones to moves played
by the opponent. The opponent does not choose N (it is the proponent who possesses a
directory of subsets for him/her), but (s)he chooses a J ∈ N (or if there is no consensus a
J 6∈ N ).
At a positive step, the proponent chooses an address ξ and a set I ((s)he enumerates the
cases (s)he is concerned with). At a negative step, the opponent chooses an address, and
the proponent must be ready for the answer of the opponent. The latter may choose a J
which does not belong to N : in this case, the proponent did not anticipate on his or her
opponent’s move ((s)he did not choose a N enough big).
A design may then be seen as a strategy, and, in this case, it may be seen as a ” dessein”
(that is a plan). Each player possesses a function which, at every move played by his/her
opponent, associates a move that (s)he can play.
Let us here take an example due to M. Quatrini.
A person X wishes to know whether another one Y, who is supposed to sell some houses
and flats, will sell a goods denoted by 1. X knows that Y possesses three goods : 1, 2 and
3. X wishes to know :

1. whether Y will send 1
2. in case Y would sell 1, at what price ?

The strategy of X consists in beginning the exchange by asking the question :
0 = what goods do you wish to sell ? This is represented by a positive move, starting from
an empty address, here denoted by < >.

0 `

`<>
starting from there, X must foresee all the possible answers by Y (therfeore the set of
subsets of {1, 2, 3}) :

` 01 ` 01, 02 ` 01, 03 ` 01, 02, 03 ` 02 ` 02, 03 ` 03

0 `
X then foresees that for some of the answers by Y, (s)he will not pursue the dialogue,
because they don’t interest him or her, hence :

` 01 ` 01, 02 ` 01, 03 ` 01, 02, 03
†

` 02
†

` 02, 03
†

` 03

0 `
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In the cases where 1 is for sale, X must plan to ask the price. For instance, if 1 is the only
goods for sale, (s)he has planed to ask : 1 = at what price ?. Hence :

011 `

` 01

In the left hand side of the sequent, there is a representation of the history of the game : X
asked the question 0 and obtained the answer 1, now (s)he asks the question 1. X must be
ready to receive any price i :

... ` 011i...

011 `

` 01

and when (s)he gets the value of i, X stops the dialogue :

...
†

` 011i ...

011 `

` 01

Because every branch is treated in this way, X’s strategy (his or her design) may be repre-
sented by :

...
†

` 011i ...

011 `

` 01

...
†

` 011i, 02 ...

011 ` 02

` 01, 02

...
†

` 011i, 03 ...

011 ` 03

` 01, 03

...
†

` 011i, 02, 03 ...

011 ` 02, 03

` 01, 02, 03
†

` 02
†

` 02, 03
†

` 03

0 `

`<>

Of course, on his or her side, Y has also his or her own strategy, which consists firstly in
being ready to receive any question :

` 0

<>`
It is the dual move with regards to X’s one :

0 `

`<>
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Then (s)he answers the question by choosing a subset of {1, 2, 3} : that amounts to applyng
a positive rule.

0n ` ... 0m `

` 0

<>`
At the move after, Y must be ready for receiving the question 1 and (s)he is free to give
the integer i, which corresponds to some price, if desired.
A design of Y may therefore be (among others) :

011i `

` 011

01 ` 03 `

` 0

<>`
A game (a dialogue) may be represented by a sequence of rule applications. In this case, a
move is entirely determined by : a sign, an address and a subset of N. For instance :

(+, <>, {0}), (−, 0, {1, 3}), (+, 01, {1}), (−, 011, {i})†

is a game from the X viewpoint. It consists for X in :
1. first, positive, move : X chooses a question (= a set I , here {0}),
2. second, negative, move : Y chooses starting from the address 0 the subset {1, 3},
3. third, positive, move : X chooses {1}, extending the address proposed by Y (here

01),
4. fourth, negative, move : Y, chooses a price i, extending the address 011,
5. the daimon stops the dialogue : X got all the informations (s)he wished.

A game may also be :

(+, <>, {0}), (−, 0, {2, 3}), †

It is worth to notice that X must also foresee a design from Y which would consist in a
refusal to sell anything. This design would be represented by :

†
` 0

<>`
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This kind of dialogue corresponds to the efforts made by a player X to demonstrate a
formula φ, against another player Y, who tries to refute it. To take again the same example
as at the end of 2.2, let us see the question of cut-elimination as a dialogue (or a dispute).
X wants to prove (A⊗ C)⊕ (B ⊗ C) and Y opposes (A⊥℘C⊥)&(B⊥℘C⊥), that is Y
negates the formula proposed by X. The design of Y is therefore :

` A⊥, C⊥ ` B⊥, C⊥

(A⊗ C)⊕ (B ⊗ C) `

and the one of X may be one of the two following ones :

A⊥ ` C⊥ `

` (A⊗ C)⊕ (B ⊗ C)
or

B⊥ ` C⊥ `

` (A⊗ C)⊕ (B ⊗ C)

These two designs may be connected by a cut to the one of Y. By eliminating the cut
(normalization), it is possible to go up to :

` A ` A⊥, C⊥ ` C

or :
` B ` B⊥, C⊥ ` C

In other words, the two players must agree on the presence of A and C or on the presence
of B and C. If they agree on one of these co-presences, the interaction can continue. We
see here that a game may be summarized into simpler elements into which it reduces.
If another game shows up, which may be reduced in the same way, the two games are
equivalent. It is exactly what happens when trying to demonstrate the equivalent formula
(A⊕B)⊗ C. That means that these two formulae cannot be distinguished on a normali-
zation viewpoint.
Let us look at a more intuitive example, due to C. Faggian and F. Maurel ([6]).
Let us assume the following contract : for one euro, Bob accepts to give Alice, at her
choice, either a book or, on his own choice, a CD or a DVD.
This contract takes the form of a Linear Logic formula :

1 euro –◦(1 livre &(1 CD ⊕ 1 DVD))

Alice accepts the contract and has two strategies :
– she gives one euro and she chooses the book ;
– she gives one euro and she chooses the surprise

Bob has two strategies :
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– he is ready to receive one euro and to give a book or to receive one euro and to give
a CD

– he is ready to receive one euro and to give a book or to receive one euro and to give
a DVD

Alice’s strategies correspond to the two following beginnings of proofs :

` e
` l⊥

` l⊥ ⊕ (c⊥&d⊥)

` e⊗ (l⊥ ⊕ (c⊥&d⊥))

` e

` c⊥ ` d⊥

` c⊥&d⊥

` l⊥ ⊕ (c⊥&d⊥)

` e⊗ (l⊥ ⊕ (c⊥&d⊥))

which may be written under the focused form :

e⊥ ` l `
` e⊗ (l⊥ ⊕ (c⊥&d⊥))

e⊥ `
` c⊥ ` d⊥
c⊕ d `

` e⊗ (l⊥ ⊕ (c⊥&d⊥))

In Ludics, they correspond to the following designs :

ξ.1 ` ξ.2 `
` ξ

ξ.1 `
` ξ.3.1 ` ξ.3.2

ξ.3 `
` ξ

Bob’s strategies correspond to :

` e⊥, l
` e⊥, c
` e⊥, c⊕ d

` e⊥, l&(c⊕ d)

` e⊥℘l&(c⊕ d)

` e⊥, l
` e⊥, d
` e⊥, c⊕ d

` e⊥, l&(c⊕ d)

` e⊥℘l&(c⊕ d)

and under a focused format :

` e⊥, l
c⊥ ` e⊥

` e⊥, c⊕ d
e⊗ (l⊥ ⊕ (c⊥&d⊥) `

` e⊥, l
d⊥ ` e⊥

` e⊥, c⊕ d
e⊗ (l⊥ ⊕ (c⊥&d⊥) `

In Ludics :
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` ξ1, ξ2
ξ.3.1 ` ξ1
` ξ.1, ξ.3

ξ `
` ξ1, ξ2

ξ.3.2 ` ξ1
` ξ.1, ξ.3

ξ `

Each of Alice’s design ”normalises” with each of Bob’s. For the time being, that means
simply that their strategies interact in a coherent way : each time Alice (resp. Bob) commits
an action, Bob (resp. Alice) has a corresponding action to react in his (resp. her) directory.

3.3 Interaction and orthogonality
It remains to give a precise formulation of the notion of normalization of two designs.
Girard defines interaction in the following way :

Interaction is coincidence of two dual loci in two different designs

Orthogonality is defined via the notion of normalization. Let us recall that in a vector-
space, two subspaces are orthogonal if and only if their intersection is simply the null
subspace {0}, and of course {0} is self-orthogonal. In Ludics, this role must be played by
a particular design : it is obviously the daimon. Two paraproofs are orthogonals if their
interaction leads to the daimon, or in other words, if there is a consensus : the game stops
because the two players agree to end it up. It is also said that the normalization of the in-
teraction between the two objects is convergent. This notion is made more precise in what
follows.
In order to explain normalization rigourously, precise definitions are needed. The reader
can find some of them in the Annex (Annex 2).
Girard introduces a slight difference between designs as drawings and designs as ”des-
seins” (plans, projects...). In French, it is almost the same word : dessin/dessein and it is
claimed that these words were not differentiated in the past. Nowadays, ”dessin” means
”drawings”, and ”dessein” means ”plan”, or design. By putting the emphasis on this second
meaning, we insist upon the strategic meaning of paraproofs, but we shall keep uniformly
the word design in order to denote our objects.
A chronicle (see Annex 2) is an alternate sequence of actions, which are either positive or
negative. An action is represented by a triple (ε, ξi, Ii), with ε a polarity, ξi an address and
Ii a set of integers. Only the last action may be the daimon.
Under this view, a design is simply a set of chronicles.
In this presentation, we have now objects associated with each ”player”, where player 1
(resp. 2) is characterised by a set of chronicles which tell him/her what to do when facing
an action of player 2 (resp. 1).
For instance, in the real estate example, the following sequence of actions is a chronicle
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from X’s viewpoint :

(+, <>, {0}), (−, 0, {1, 3}), (+, 01, {1}), (−, 011, {i})†

Since the basis is positive (X begins with a question), the first action is of polarity +, its
address is the empty sequence (an arbitrary locus where the question is localized) and the
selected set is {0}. The second action is of negative polarity, its focus coincides with the
only element of ξ0 ? I0 (the only element created by the previous action 0), noted ”0”.
It could be interpreted as ”X is ready for an answer from his/her partner localized at the
sub-loci 01 and 03”. The third one is positive, its focus is an element of ξ1 ? I1 = {01, 03},
here : 01. The fourth one is negative, its focus is an element of ξ2 ? I2 = {011}, here : 011,
and X is expecting an integer as an answer to his/her question. The last action is positive
and is the daimon.
Other sequences can provide chronicles, like :

(+, <>, {0}), (−, 0, {2, 3}), †

In the Bob and Alice example, in order to find the chronicles, we have only to reason in
terms of addresses.

1. Bob begins the dialogue by proposing the contract 1 starting from the address <>,
this move is represented by (+, <>, {1}),

2. then, according to the choice that Alice can make, he prepares himself to give the
book : (−, 1, {1, 2}), or to give the ”surprise” : (−, 1, {1, 3}),

3. if Alice has chosen the book, Bob will perform a positive action : (+, 12, {1}),

4. if Alice has chosen the surprise, he will perform the positive action (+, 13, {1}) or
the positive action (+, 13, {2})

hence, from Bob’s viewpoint, the following chronicles :
(+, <>, {1}), (−, 1, {1, 2}), (+, 12, {1})
(+, <>, {1}), (−, 1, {1, 3}), (+, 13, {1})
(+, <>, {1}), (−, 1, {1, 3}), (+, 13, {2})

and from Alice’s viewpoint :
(−, <>, {1}), (+, 1, {1, 2}), (−, 12, {1}), (+, †)
(−, <>, {1}), (+, 1, {1, 3}), (−, 13, {1}), (+, †)
(−, <>, {1}), (+, 1, {1, 3}), (−, 13, {2}), (+, †)

This definition of chronicles and of designs as sets of chronicles allows to understand why
a play, identified with a chronicle, is not simply a sequence of rule applications : if it was
the case, we should expect the negative moves associated not with sets I , as it is the case,
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but with sets of sets.
Let us now define more precisely the notion of interaction (and orthogonality). As we
mentioned above, A cut is the coincidence of two loci in the bases of two designs. A cut
between ` ξ et ξ ` is often met, in that case, we will speak of the set made of both designs
interacting by means of this cut as a ”closed net”. Namely, a closed net consists in a cut
between the two following designs :

D···
κ

` ξ

E···
(ξ,N )

ξ `

The normalization of such a closed net is such that :
– if κ is the daimon, then the normalized form is :

†
`

(this normalised net is called dai)
– if κ = (ξ, I), then if I 6∈ N , normalization fails,
– if κ = (ξ, I) and I ∈ N , then we consider, for all i ∈ I the design Di, sub-design

of D of basis ξ ? i `, and the sub-design E ′ of E , of basis ` ξ ? I , and we replace D
and E by, respectively, the sequences of Di and E ′.

In other words, the initial net is replaced by :

Di1···

ξ ? i1 ` ...

E ′···

` ξ ? i1, ..., ξ ? in

Din···

ξ ? in `

with a cut between each ξ ? ij ` and the corresponding ”formula” ξ ? ij in the design
E ′

This definition formalizes the intuition we mentioned above, of an interaction which ends
up by a consensus (or, to the contrary, which diverges, like it is the case when I 6∈ N ).
Moreover, orthogonality may be now well defined :
A designD is orthogonal to a design E (D⊥E) if and only if the elimination of the cut bet-
ween the two leads to the net dai. Let us look how to prove orthogonality of two designs,
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by taking again the real estate example. Let us consider the two following designs, linked
by a cut at their basis :

†
... ` 011i, 02...

(011, {i; i ∈ N})
011 ` 02

` 01, 02

0 `

`<>

011i `

` 011

01 ` 02 `

` 0

<>`

It is possible, in several stages, to make the cut go up. For instance, a first stage leads to :

†
... ` 011i, 02...

(011, {i; i ∈ N})
011 ` 02

` 01, 02

0 `

011i `

` 011

01 ` 02 `

` 0

a second stage to :

011i `

` 011

01 `

†
... ` 011i, 02...

(011, {i; i ∈ N})
011 ` 02

` 01, 02 02 `

where X’s design has been splitted in two parts, for readibility, and where there is a cut
between 01 ` and the 01 which is in ` 01, 02 on one side, and another one between the 02
there is in ` 01, 02 and 02 ` on the other side.
A third stage leads to :

011i `

` 011

†
... ` 011i, 02...

(011, {i; i ∈ N})
011 ` 02 02 `
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then we get :

011i `
†

` 011i, 02 02 `

with a cut between 011i ` and the 011i which occurs in the sequence of sequents {`
011i, 02; i ∈ N},, and between the 02 and 02 `. Because each cut possesses a member
obtained by the daimon, the interaction converges towards dai.

3.4 Separation
Designs are like strategies. As a metaphor, we can see them as a set of potential plays in
which a determinate player may makes his/her choice, but how to use a design D of base
` σ ? As Girard says : ”simply by cutting it with a counter-design E of base σ ` and
normalizing the net they constitute”. What is very important here is that designs are deter-
mined by their orthogonal, that means their use. Hence the importance of the Separation
Theorem :

If D 6= D′ then there exists a counterdesign E which is orthogonal to one of
D,D′ but not the other.

Otherwise, in order to play at best, the player needs to organize his/her designs according
to their possible uses. We therefore define a partial order on designs, made possible by the
separation theorem which guarantees that the relation is indeed an order.

D � D′ if and only if every design orthogonal to D is also orthogonal to D′
(D⊥ ⊂ D′⊥)

In From foundations to Ludics ([10]), Girard makes this definition more intuitive :D � D′
means that D′ is ”more convergent” than D. We may think of D′ as obtained from D by
means of two operations :

– Enlargement : we add more premisses for positive rules, in other words we replace
N by N ′ ⊃ N (in other words, less branches of the dialogue will lead to a dissen-
sus),

– Shortening : some positive rules (ξ, I) are replaced by simple occurrences of the
daimon (on some branches, the dialogue ends up earlier).

This definition gives sense to the notions of a smallest and a biggest design. The smallest
one is not a design properly speaking, it conducts the most often to dissensus, it has no
branches and it is the empty set of chronicles. Girard calls it Fid. The biggest one always
converges and at once, it is the daimon.
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We may distinguish a positive daimon and a negative one.
Positive daimon :

†
` Λ

Negative daimon :

...
†

` ξ ? I,Λ ...
(ξ, ℘f (N)\{∅})

ξ ` Λ

If we take N = ∅ in the positive rule, then obviously, for any move made by the other
player, there will be a dissensus (the proponent has not enough information to answer to
the attacks of the opponent). This case is represented by the skunk :

(ξ, ∅)
ξ `

Looking at the real estate example, we see that the design of X (DX) is orthogonal to se-
veral possible designs of Y , its orthogonal therefore contains all these designs. Let us now
imagine another design, D′X which is orthogonal to still more designs, in other words,
where X would have planned still more moves by his or her partner. This design would
contain more chronicles ended up by the daimon, and chronicles that would develop star-
ting from other negative actions and also leading to daimon.
If we consider now the orthogonal ofD⊥, then obviously it containsD, but it also contains
all the designs D′ such that D � D′. In other words, it is stable by super-design.

4 Behaviors
When we have a non empty set of designs, we are interested in all the ways of extending it
by means of other ones which would behave similarly with regards to normalization. The
completed set is called a behavior : we may actually think of it as the extension of a real
behaviour (in the sense of a set of coherent primitive actions, which intends to reach some
goal).

Définition 1 A behavior is a set of designs (of the same basis) C which is equal to its
bi-orthogonal (C = C⊥⊥).

Given a design D belonging to a behavior C, there exists in C a smallest element included
in D which is, in some way, its best witness, we call it the incarnation of D with regards
to C. It is the smallest part of a design which guarantees its belongness to a behavior. This
notion reveals useful when looking for a new interpretation of connectives in Ludics terms.
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4.1 Some particular behaviors
We may now define the behavior induced by a design D, it is the bi-orthogonal of the set
{D}. In the example we have been dealing with until now, it contains all the designs of
DX , and particularly the daimon of basis `<>, design which did not occur in our example
as a design ofX , but that could be now chosen : it would correspond to an immediate issue
from the dialogue, even before having asked the initial question.
Another example is given by the following design :

(ξ, ∅)
` ξ

It is very particular. it is a positive design, therefore held by the proponent. If (s)he aims
at a consensus, the opponent has not many choices since there is no address for answering
(the proponent gave none). The opponent can therefore only oppose the daimon, but in
doing so, (s)he admits that (s)he has lost the game ! With such a design... the proponent
ever wins ! Girard therefore calls it the Nuclear Bomb, because it is the Absolute weapon !
Its only orthogonal design is therefore :

†
`

ξ `

but this last design is also orthogonal to :

†
` ξ

Therefore we have a behavior which contains two designs : the Bomb and the daimon. let
us note 1 this behavior : it will be the neutral element of the tensor.
But instead of the Bomb, we may take the skunk and look for the negative behavior which
contains it. It will be noted >. What is the orthogonal of > ? Since the other player does
not give me any set of addresses to play, I can only play the daimon, in other words I loose.
We get :

>⊥ = {Dai}

and
> = Dai⊥

that is, all the negative designs of the same basis.
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4.2 What Logic for Ludics ?
4.2.1 ”Truth” and ”falsehood”

Having a notion of win (a design is said to be winning if it does not play the daimon and it
is parcimonious and uniform) allows us to get back a notion of ”truth” : a behavior could
be said ”true” when it contains a winning design, false when its orthogonal contains one.
With this characterization, two designs which incarnate two orthogonal behaviors cannot
be both true. Or else, if they are both winning, they are not orthogonal, that means that
their ”dispute” goes on indefinitely. But we can have behaviors which are neither true nor
false, it is the case if the two players give up.
Probably this attribution of ”truth” to a behavior is not particularly adequat... Perhaps it
could be better to speak of a ”fruitful” behavior... But this is only to show that even in such
an anti-realist conception, it is still possible to introduce a duality which can be compared
to ”true vs false”.

4.2.2 Formulae and behaviors

We may notice here that behaviors are sets of designs exactly like in intuitionistic logics,
formulae are interpreted as sets of proofs. This leads to the following correspondance :

formula behavior
proof design

When we speak of the intersection of two behaviors, it is as if we spoke of the intersection
of two formulae. In intuitionistic logic, this has an obvious meaning : an element of this set
proves A and proves B and therefore it proves A∧B, but in Ludics, things go differently.
The notion of formula as a ”spiritualist” notion evaporates and is replaced by that of locus.
There are therefore two ways of speaking of intersection and union, one takes into account
this concrete aspect of the formulae (their localisation) and the other one takes into account
the possibility we have to ”de-localise” them (particularly by means of Fax).

4.2.3 A localist viewpoint against a spiritualist one

It is clear that in Set Theory, the union is localist : it crucially depends on the elements
of the sets. If we take two isomorphisms φ and ψ, we shall not have in general X ∪ Y =
φ(X) ∪ ψ(Y ). For instance, it is not enough to know the cardinality of X and that of Y to
know that of X ∪ Y .
But it is possible to make the disjoint union of two sets X and Y . For that we shall have to
take two one-to-one mappings φ and ψ such that φ(X) and ψ(Y ) are disjoint and we shall
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have of course : Card(X + Y ) = Card(X) + Card(Y ). The disjoint sum is therefore
spiritualist, that means : it does not depend on concrete localisation.
In Ludics, it is possible to perform some operations like in the case of the disjoint union.
If a locus σ is given, we may define two applications φ et ψ which will be seen as deloca-
lisations :

φ(σ ? i ? τ) = σ ? 2i ? τ ψ(σ ? i ? τ) = σ ? (2i+ 1) ? τ

The images by φ and ψ are still designs. If G and H are behaviors of the same basis σ,
then φ(G) and ψ(H) are disjoint. Or, more exactly, when they are positive behaviors, their
intersection is the smallest behavior on a positive basis, that is 0 = {Dai} , and when they
are negative behaviors, every design D which belongs to both is such that the intersection
between its incarnation with regards to one and its incarnation with regards to the other is
empty.

4.3 Sums and products
If A is an arbitrary set of designs, then A⊥ is a behavior (since A⊥⊥⊥ = A⊥). Reciprocally,
every behavior on a basis <>` or on a basis `<> is the orthogonal of a set of designs.
For instance, if A = ∅, A⊥ is the set of designs which converge with no other one, that is
which converge only with Dai. It is >, the behavior that the skunk is the incarnation of.
Otherwise, since behaviors are sets, nothing prevents to make unions, intersections and
products of them. It is possible to show :

– The intersection of two behaviors is a behavior
We may also define a behavior from a union. Let us write :

G tH = (G ∪H)⊥⊥

this will allow us to retrieve the connectives of Linear Logic.

4.3.1 Additives

The case of additives corresponds to the case where behaviors are disjoint.

Définition 2 A directory is a subset of ℘f (N) (= a set of ”ramifications”). If G is a
positive behavior on `<>, then the directory of G, noted Dir(G) is the set of the sets of
indexes I such that :
(+, <>, I) that is the first action of a design belonging to G.
If G is a negative behavior on ξ `,then the directory of G is the set of sets of indexes I for
which, for any design incarnated in G, there is an action (−, ξ, I) as the initial action,
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This definition entails (P. L. Curien p.43) that the directory of G and that of G⊥ are iden-
tical.

Définition 3 Two behaviors G and G’ on the same basis are said to be disjoint if their
directories are disjoint.

If two negative behaviors G and H are disjoint and if D1 and D2 are incarnations of these
behaviors, then their union is well defined, and it is a design of G∩H. Its first action has,
as its set of ramifications, the union of that of D1 and of that of D2, it is therefore a design
which is inside G and inside H, but it is at the same time, a pair of designs, thus leading
to :

|G| × |H| = |G ∩H|

where |G| denotes the set of incarnations with regards to G. In other words, every incarna-
ted design of G∩H is obtained by taking a design incarnated in G and a design incarnated
in H making the union of the chronicles. It is what Girard calls the mystery of incarnation
(the fact that intersection and cartesian product coincide).
It is then possible to define the additive connectives.

Définition 4 If G and H are two disjoint negative behaviors, then, we put :

G&H = G ∩H

If they are positive, we put :
G⊕H = G tH

⊕ is therefore a spiritualist connective.

4.3.2 Multiplicatives

Définition 5 Let U and B be two positive designs, we define the tensor product U �B by :
– if one of the two is the daimon, then U � B = Dai,
– if not, let (+, <>, I) and (+, <>, J) be the first actions of respectively B and U , if
I∩J 6= ∅, then U�B =Dai. If not, we replace in each chronicle of B and U the first
action by (+, <>, I ∪J), which gives respectively B′ and U ′, then U �B = U ′∪B′.

It is then possible to define the tensor product ⊗ of two behaviors by means of delocalisa-
tions, but notice that Ludics also provides us with new connectives, with regards to Linear
Logic. Theses de-localisations (for instance the previous φ and ψ which send biases follo-
wing the locus of the basis either to odd integers or to even ones) allow to make that the
first actions respective to the two designs which incarnate the two behaviors have disjoint
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ramifications. We may define the product � of two behaviors by : F�G = {A�B;A ∈
F,B ∈ G}, and then the tensor properly speaking by F⊗G = (F�G)⊥⊥.
Under full completeness (that is under the assumption that the bi-orthogonal does not
contain more than the initial behavior), we shall have that every design D in F ⊗G may
be decomposed according to : D = D1 �D2 with D1 ∈ F and D2 ∈ G.
Nevertheless, let us go back to our new connective by means of a striking example where
we see that the locative viewpoint enables one to take into account some ”non logical phe-
nomena”, like the possibility to obtain true� true = false. Let G = {D}⊥⊥, where D is
the design :

(0, ∅)
0 `

(<>, {0})
`<>

in other words : I ask the question 0, then I don’t open any possible answer for my op-
ponent, therefore of course, I win ! Let us calculate G�G. Since I ∩J 6= ∅, the definition
gives us : G � G = Dai, it is the behavior which contains the only design :

†
`<>

It is the behavior which immediately looses. Therefore we may very well have :

true� true = false

We can have the following interpretation. Let us imagine G to be the behavior generated
by a designD which consists in the possibility to assert 0 from a situation localized in<>.
Let H the behavior generated by the following E

...
†

` n ...
(−, <>, {{n};n ∈ N})

<>`

which can be interpreted as : in the situation < > as soon as you give me an argument, I
shall give up.
Of course, D and E are orthogonal, therefore D ∈ H⊥, something that we translate by
saying that G wins against H. Moreover, G is true since it has a winning design. But G
does not contain only D, it also contains de-localized designs of D. For instance, we have
seen that the argument given in D was 0, we can now imagine a variant with the argument
1. LetD′ this variant, it is a design of basis <>` and its only chronicle is : (<>, {1}). Let
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us compareD�D andD�D′.D�D′ is no longer orthogonal to E , therefore it no longer
belongs to H⊥. It is now orthogonal to what we get with another design E ′ of the kind :

...
†

` n, n′ ...
({{n, n′};n, n′ ∈ N, n 6= n′})

<>`

which now interprets as ”give me two arguments, and I shall give up”. Because D �D′ is
orthogonal to E ′,D�D′ belongs to the orthogonal of the behavior H′ generated by E ′. But
let us remember that D�D = Dai, and G�G = {Dai}. It follows that D�D cannot be
winning. If I have only one argument to give, I cannot give two... Hence the fact that if G
is winning against give me an argument, in order for G � G to be true, it should converge
with a H’ which would be interpreted as give me two arguments, which is not the case.
The tensor product thus expresses, like we expected, a resource sensitivity. On the view-
point of a ”perfect dialogue”, each question calls for one answer and an answer does not
satisfy two questions at the same time, or there must be two instances (situated in two
different loci) of the answer, each answering to a separate question.

5 Conclusion
In the previous sections, we gave some definitions and examples of the main concepts of
Ludics. Definitions were not always precise and formal ones, but we hope that by means
of them, the reader got the essence of these notions. Let us now try to express the core phi-
losophical ideas contained in that frame. A. Pietarinen already exposed some of them in a
very relevant way, comparing the spirit of Ludics with Peirce’s pragmatics and Wittgen-
stein’s philosophy ([16]). Making comments on the fact that in Ludics, the meaning of a
formula (or the meaning of the proof of a formula) is given by its interaction against obser-
vers (”Proofs, and hence meanings, are created solely by interaction with other proofs”),
the Finnish philosopher points out the commonality of this kind of operational meaning
with that of Peirce’s pragmatic maxim, according to which the meaning of a proposition
does not lie in its ”conformity” to an exterior state of affairs, but is provided by another
sign, its interpretant (the interpretant is ”a sign of another sign”). In Ludics, this translates
into the fact that the meaning of a proof is given by the proofs themselves, and paraproofs
may be considered as producing interpretants for proofs.
Pietarinen (p. 273) also points out that these ideas may be paralleled with Wittgenstein’s
remark : ”you can’t get behind rules, because there isn’t any behind” (Wittgenstein, 1978,
p. 244).
Immanentism is manifest in Ludics when compared to the traditional Theory of Games.
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For instance, Ludics ignores pay-off functions which would determine the ”winner” from
the outside. Instead of that, it relies solely on the internal structure of the interactions. Like
Pietarinen says ”the internal process of computation is thus taken to be as interesting as
the outcome”. We may think that this really paves the way for a general theory of games,
more in conformity with Wittgenstein’s language games than current semantical games,
since of course the language games that Wittgenstein envisaged, constitued a much more
complicated network than given by usual logical games which can be put in an ”extensive
form”.
Nevertheless, as we already noticed, the notions of a game and of a strategy are, in Lu-
dics, a mere metaphor. Ludics can get rid of them. There are actually no real players like
”Nature” and ”Myself” having always played a game since immemorial times ! Objects
which interact are not individual players but sets of designs called ”behaviors”. There is
no room for empirical subjects, and ”behaviors” are just what replaces ”formulae” in older
frameworks (and designs just what replaces proofs of formulae).
With regards to ”anti-realism”, comparison maybe made with Dummett’s philosophy ([5]),
it would not be right to say that Ludics denies reality, more than does intuitionnistic logic.
It only starts from the observation (in common with Dummett) that relying on a correspon-
dence theory in order to found the relation between language and reality leads to a dead
end. Therefore, coherently, another conception must be found regarding our intellectual
activities. That does not mean that reality does not exist but only that, if it exists, it is only
as what makes processes, and interactions between them, possible.

6 Annexes

6.1 Annex 1 - A tryadic sequent calculus
In his proof of the focalization theorem, Andréoli uses sequents with a stoop. The stoop
contains at most one formula and it is positive. This corresponds to the case where, sear-
ching for an active formula, we meet one which is positive : at this time, we focus on it and
the following rules only apply to the content of the stoop, producing new positive formulae
to decompose until we find a negative one, in which case, this last one is put in the com-
mon space in order to begin a sequence of negative steps. The reintegration of a formula
in this common space amounts to a shift, that is a step where the polarity is changed. The
formula which goes to the negatives was until now among the positives, and therefore seen
as positive. This entails that a formula can change its polarity. In order to facilitate the cal-
culus, it is in fact considered that every connective of a given polarity connects formulae
of the same polarity. For instance, if we have a tensor between negative formulae, we shall
have an operator of change of polarity which will temporarily make positive the negative
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formulae. If N is negative, ↓ N is positive, and the rule for changing sign is the rule :

` ∆, N ;
[↓]

` ∆; ↓ N

In a similar way, the focalization process, that is the process according to which by decom-
posing a negative formula a positive formula is found, which is focused, may be described
by means of two rules. On one side, another rule for changing the sign, which makes the
formula on which we shall focus, until now among the negatives and therefore negative
itself, to go back to its positive polarity, and on the other side the focalization rule pro-
perly speaking, which makes any positive formula go to the stoop. These two rules are
respectively :

` ∆, P ;
[↑]

` ∆, ↑ P ;

` ∆;P
[focus]

` ∆, P ;

In the focalization rule, the only negative elements of ∆ are necessarily atoms (if not, there
would be still a negative formula to decompose). The other rules are then :

AXIOM

` P⊥;P

POSITIVE RULES

` Γ;P

` Γ;P ⊕Q

` Γ;Q

` Γ;P ⊕Q

` Γ1;P ` Γ2;Q

` Γ1,Γ2;P ⊗Q

NEGATIVE RULES

` N1, N2,Γ;

` N1℘N2,Γ;

` N1,Γ; ` N2,Γ;

` N1&N2,Γ;

6.2 Annex 2 - Designs and chronicles
Définition 6 A design is a tree, all the nodes of which are forks Γ ` ∆ the root of which
is called a basis (or conclusion), and which is built by using :

– the daimon
– the positive rule
– the negative rule
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On another hand, designs as ”desseins” are sets of ”chronicles”. A chronicle is an alternate
sequence of moves (or actions). More precisely :

Définition 7 A chronicle of basis Γ ` ∆ is a non empty sequence of alternate actions
k0, ..., kn, where ki = (ε, ξi, Ii), with ε a polarity, ξi an address and Ii a set of integers,
such that :

– if the basis is negative (resp. positive), k0 has the polarity − (resp. +),
– only the last action, kn may be the daimon = (+, †),
– if we call focus the locus of the active formula, a negative action ki has, as its

focus, either the unique element of Γ (in this case, the first action), or an element of
ξi−1 ? Ii−1,

– the focus of a positive action ki is either an element ξi of ∆ or an element of ξq ? Iq,
where (−, ξq, Iq) is a previous negative action,

– the focuses are pairwise distinct.

We may make more precise the meaning of design :

Définition 8 A design of basis Γ ` ∆ is a set D of basic chronicles Γ ` ∆ such that :
– D is a forest,
– the chronicles of D are pairwise coherent (if two chronicles differ, it is only at a

negative action, and after it, they have never the same foci),
– if a chronicle ends up, its last action is positive,
– if the basis is positive, then D is non empty.
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