Proofs and Dialogue: the Ludics view

Alain Lecomte

Laboratoire : "Structures formelles du langage", Paris 8 Université

February, 2011
Tübingen
with collaboration of Myriam Quatrini

Table of Contents

- Ludics as a pre-logical framework
 - A polarized framework
 - A localist framework
- Designs as paraproofs
 - Rules
 - Daimon and Fax
 - Normalization
- The Game aspect
 - Plays and strategies
 - The Ludics model of dialogue

Where Ludics come from?

Ludics is a theory elaborated by J-Y. Girard in order to rebuild logic starting from the notion of *interaction*.

It starts from the concept of **proof**, as was investigated in the framework of **Linear Logic**:

- Linear Logic may be polarized (→ negative and positive rules)
- Linear Logic leads to the important notion of proof-net
 (→ being a proof is more a question of connections than a
 question of formulae to be proven) → loci

Polarization

Results on polarization come from those on **focalization** (Andréoli, 1992)

some connectives are deterministic and reversible (= negative ones): their right-rule, which may be read in both directions, may be applied in a deterministic way:

Example

$$\frac{\vdash A, B, \Gamma}{\vdash A \otimes B, \Gamma} [\wp]$$

$$\frac{\vdash A, \Gamma \vdash B, \Gamma}{\vdash A \& B, \Gamma} [\&]$$

Polarization

 the other connectives are non-deterministic and non-reversible (= positive ones) : their right-rule, which cannot be read in both directions, may not be applied in a deterministic way (from bottom to top, there is a choice to be made) :

Example

$$\frac{\vdash A, \Gamma \quad \vdash B, \Gamma'}{\vdash A \otimes B, \Gamma, \Gamma'} [\otimes] \qquad \frac{\vdash A, \Gamma}{\vdash A \oplus B, \Gamma} [\oplus_g] \qquad \frac{\vdash B, \Gamma}{\vdash A \oplus B, \Gamma} [\oplus_g]$$

The Focalization theorem

- every proof may be put in such a form that :
 - while there are negative formulae in the (one-sided) sequent to prove, choose one of them at random,
 - as soon as there are no longer negative formulae, choose a
 positive one and then continue to focalize it
- we may consider positive and negative "blocks" → synthetic connectives
- convention: the negative formulae will be written as positive but on the left hand-side of a sequent → fork

Hypersequentialized Logic

Formulae:

$$F = O|1|P|(F^{\perp} \otimes \cdots \otimes F^{\perp}) \oplus \cdots \oplus (F^{\perp} \otimes \cdots \otimes F^{\perp})|$$

Rules:

axioms :

$$\overline{P \vdash P, \Delta}$$
 $\overline{\vdash 1, \Delta}$ $\overline{O \vdash \Delta}$

logical rules :

$$\frac{\vdash A_{11}, \dots, A_{1n_1}, \Gamma \quad \dots \quad \vdash A_{\rho 1}, \dots, A_{\rho n_{\rho}}, \Gamma}{(A_{11}^{\perp} \otimes \dots \otimes A_{1n_1}^{\perp}) \oplus \dots \oplus (A_{\rho 1}^{\perp} \otimes \dots \otimes A_{\rho n_{\rho}}^{\perp}) \vdash \Gamma}$$

$$\frac{A_{i1} \vdash \Gamma_{1} \quad \dots A_{in_{i}} \vdash \Gamma_{\rho}}{\vdash (A_{11}^{\perp} \otimes \dots \otimes A_{1n_{1}}^{\perp}) \oplus \dots \oplus (A_{\rho 1}^{\perp} \otimes \dots \otimes A_{\rho n_{\rho}}^{\perp}), \Gamma}$$

where $\cup \Gamma_k \subset \Gamma^1$ and, for $k, l \in \{1, \dots p\}$, $\Gamma_k \cap \Gamma_l = \emptyset$.

cut rule :

Remarks

- all propositional variables P are supposed to be positive
- formulae connected by the positive ⊗ and ⊕ are negative (positive formulae are maximal positive decompositions)
- $(... \otimes ... \otimes ...) \oplus (... \otimes ... \otimes ...) ... \oplus (... \otimes ... \otimes ...)$ is not a restriction because of distributivity $((A \oplus B) \otimes C \equiv (A \otimes C) \oplus (B \otimes C))$

Interpretation of the rules

- Positive rule :
 - choose $i \in \{1, ..., p\}$ (a \oplus -member)
 - then decompose the context Γ into disjoint pieces
- Negative rule :
 - nothing to choose
 - simply enumerates all the possibilities

First interpretation, as questions:

- Positive rule : to choose a component where to answer
- Negative rule: the range of possible answers

The daimon

Suppose we use a rule:

$$\underset{\vdash \; \Gamma}{--} \, (\text{stop!})$$

for any sequence Γ , that we use when cannot do anything else...

- the system now "accepts" proofs which are not real ones
- if (stop!) is used, this is precisely because... the process does not lead to a proof!
- (stop!) is a paralogism
- the proof ended by (stop!) is a paraproof
- cf. (in classical logic) it could give a distribution of truth-values which gives a counter-example (therefore also: counter-proof)

A reminder of proof-nets

$$\vdash A^{\perp} \wp B^{\perp}, (A \otimes B) \otimes C, C^{\perp}$$

$$\vdash A, A^{\perp} \vdash B, B^{\perp} \vdash C, C^{\perp}$$

$$\vdash (A \otimes B) \otimes C, A^{\perp}, B^{\perp} \vdash C, C^{\perp}$$

$$\vdash (A \otimes B) \otimes C, A^{\perp}, B^{\perp}, C^{\perp}$$

$$\vdash (A \otimes B) \otimes C, A^{\perp}, B^{\perp}, C^{\perp}$$

$$\vdash (A \otimes B) \otimes C, C^{\perp}$$

$$\vdash (A \otimes B) \otimes C, A^{\perp} \wp B^{\perp} \vdash C, C^{\perp}$$

$$\vdash (A \otimes B) \otimes C, A^{\perp} \wp B^{\perp}, C^{\perp}$$

$$\vdash (A \otimes B) \otimes C, A^{\perp} \wp B^{\perp}, C^{\perp}$$

$$\vdash (A \otimes B) \otimes C, C^{\perp}$$

par" and "tensor" links:

We define a *proof structure* as any such a graph built only by means of these links such that each formula is the conclusion of exactly one link and the premiss of at most one link.

Criterion

Definition (Correction criterion)

correction criterion A proof structure is a proof net if and only if the graph which results from the removal, for each \wp link ("par" link) in the structure, of one of the two edges is connected and has no cycle (that is in fact a tree).

Loci

Rules do not apply to **contents** but to **addresses**

Example

$$\frac{ \begin{array}{c} \vdash e^{\perp}, c \\ \vdash e^{\perp}, l \end{array} \begin{array}{c} \vdash e^{\perp}, c \oplus d \\ \hline \vdash e^{\perp}, l \& (c \oplus d) \\ \hline \vdash e^{\perp} \wp \left(l \& (c \oplus d) \right) \end{array}}$$

$$\frac{ \begin{array}{c} \vdash e^{\perp}, d \\ \vdash e^{\perp}, l & \vdash e^{\perp}, c \oplus d \\ \hline \vdash e^{\perp}, l \& (c \oplus d) \\ \hline \vdash e^{\perp}_{\wp} (l \& (c \oplus d)) \end{array}}$$

under a focused format:

$$\frac{c^{\perp} \vdash e^{\perp}}{\vdash e^{\perp}, l} \xrightarrow{\vdash e^{\perp}, c \oplus d}$$
$$e \otimes (l^{\perp} \oplus (c \oplus d)^{\perp}) \vdash$$

$$\frac{d^{\perp} \vdash e^{\perp}}{e \otimes (\mathit{I}^{\perp} \oplus (c \oplus d)^{\perp}) \vdash}$$

with only loci:

$$\frac{ \vdash \xi 1, \xi 2 \qquad \frac{\xi.3.1 \vdash \xi 1}{\vdash \xi.1, \xi.3}}{\xi \vdash}$$

$$\frac{ \begin{array}{c} \xi.3.2 \vdash \xi1 \\ \vdash \xi1,\xi2 \\ \hline \xi \vdash \end{array}}{\xi \vdash \xi.1,\xi.3}$$

Rules

Definition

positive rule

$$\frac{\dots \quad \xi \star i \vdash \Lambda_i \quad \dots}{\vdash \xi, \Lambda} (+, \xi, I)$$

- i ∈ I
- all Λ_i's pairwise disjoint and included in Λ

Definition

negative rule

$$\frac{\dots \quad \vdash \xi \star J, \Lambda_J \quad \dots}{\xi \vdash \Lambda} \left(-, \xi, \mathcal{N} \right)$$

daimon

Dai

<u></u> ⊢ Λ [†]

- it is a positive rule (something we choose to do)
- it is a paraproof

Is there a identity rule?

- No, properly speaking (since there are lo longer atoms!)
- two loci cannot be identified
- there only remains the opportunity to recognize that two sets of addresses correspond to each other by displacement: Fax

$$\textit{Fax}_{\xi,\xi'} = \frac{\frac{... \quad \textit{Fax}_{\xi_{i1},\xi'_{i1}} \quad ...}{...\xi' \star i \vdash \xi \star i ...}}{\frac{... \quad \vdash \xi \star J_{1},\xi' \quad ...}{\xi \vdash \xi'} (+,\xi',J_{1})}{(-,\xi,\mathcal{P}_{f}(\mathbb{N}))}$$

Infinite proofs

- $\mathcal{F}ax...$ is **infinite**! (cf. the directory $\mathcal{P}_f(\mathbb{N})$)
- it provides a way to explore any "formula" (a tree of addresses) at any depth

Designs

Definition

A **design** is a tree of **forks** $\Gamma \vdash \Delta$ the root of which is called the **base** (or conclusion), which is built only using :

- daimon
- positive rule
- negative rule

a design...

Example

$$\frac{011 \vdash 012 \vdash 02}{\vdash 01,02} (+,01,\{1,2\}) \frac{031 \vdash 033 \vdash 01}{\vdash 01,03} (+,03,\{1,3\}) \frac{01}{\vdash 01,03} (-,0,\{\{1,2\},\{1,3\}\}) \frac{01}{\vdash 01,03} (+,03,\{1,3\})$$

- a negative step gives a fixed focus and a set of ramifications.
- on such a basis, a positive step chooses a focus and a ramification

An illustration

- positive rule : a question (where will you go next week ?)
- negative rule: a scan of possible answers is provided, (Roma and Naples or Rome and Florence)
- in case of the choice 1 : positive rule on the base "Roma", new questions (with whom? and by what means?)
- in case of choice 2 : positive rule on the base "Florence", new questions (with whom? and how long will you stay?)

Normalization

- no explicit cut-rule in Ludics
- but an implicit one: the meeting of same addresses with opposite polarity

Example

which is rewritten in:

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ \xi 12 \vdash \qquad \vdash \xi 12, \xi 11 \qquad \qquad \xi 11 \vdash \xi 2 \qquad \qquad \xi 2 \vdash$$

And so on ...

When the interaction meets the daimon, it converges. The two interacting designs are said **orthogonal**

Otherwise the interaction is said divergent.

$$\begin{array}{c|c} \vdots & \vdots & \vdots \\ \frac{\vdash \xi 11, \xi 12}{\xi 1 \vdash} & \frac{\vdash \xi 21 \quad \vdash \xi 22, \xi 23}{\xi 2 \vdash} & \vdots \\ \hline \vdash \xi & & \vdash \xi \\ \end{array}$$

Normalization, formally - 1- Closed nets

Namely, a **closed net** consists in a cut between the two following designs:

$$\begin{array}{ccc}
\mathcal{D} & & \mathcal{E} \\
\vdots & & \vdots \\
\hline
+ \xi & & \overline{\xi} \vdash (\xi, \mathcal{N})
\end{array}$$

Orthogonality

• if κ is the daimon, then the normalized form is :

(this normalised net is called dai)

- if $\kappa = (\xi, I)$, then if $I \notin \mathcal{N}$, normalization fails,
- if κ = (ξ, I) and I ∈ N, then we consider, for all i ∈ I the design D_i, sub-design of D of basis ξ * i ⊢, and the sub-design E' of E, of basis ⊢ ξ * I, and we replace D and E by, respectively, the sequences of D_i and E'.

In other words, the initial net is replaced by :

$$\begin{array}{cccc} \mathcal{D}_{i_1} & \mathcal{E}' & \mathcal{D}_{i_n} \\ \vdots & \vdots & \vdots \\ \overline{\xi \star i_1 \vdash} & \dots & \overline{\vdash \xi \star i_1, \dots, \xi \star i_n} & \overline{\xi \star i_n \vdash} \end{array}$$

with a cut between each $\xi \star i_j \vdash$ and the corresponding "formula" $\xi \star i_j$ in the design \mathcal{E}'

The separation theorem

Theorem

If $\mathcal{D} \neq \mathcal{D}'$ then there exists a counterdesign \mathcal{E} which is orthogonal to one of $\mathcal{D}, \mathcal{D}'$ but not to the other.

Hence the fact that: the objects of ludics are completely defined by their interactions

- a design D inhabits its behaviour (= like its type)
- a behaviour is a set of designs which is stable by bi-orthogonality (ℂ = ℂ^{⊥⊥})

The game aspect

```
A slight change of vocabulary:
```

step in a proof action

positive step positive action negative step negative action

negative step negative action $(-,\zeta,J)$ branch of a design play in a game chronicle

design strategy design (dessein)

as a set of chronicles

 $(+, \xi, I)$

Example

$$\frac{011 \vdash 012 \vdash 02}{\vdash 01,02} (+,01,\{1,2\}) \frac{}{\vdash 01,03} \dagger (-,0,\{\{1,2\},\{1,3\}\})} \frac{}{}{\frac{0 \vdash }{\vdash <>}} (+,<>,\{0\})}$$

Example

$$(+,<>,0), (-,0,\{1,2\}), (+,01,\{1,2\}) \ (+,<>,0), (-,0,\{1,3\}), (+,\dagger)$$

Remarks

- usually, the logician lives in a dualist universe:
 - proof vs (counter) model
- with ludics:
 - proof vs counter proof
 - processes anchored on A vs processes anchored on $\neg A$
- analogies:
 - argumentation vs refutation

In Ludics a "proof" is completely defined by its interactions.

Dialogue in Ludics

The archetypal figure of interaction is provided by two intertwined processes the successive times of which, alternatively positive and negative, are opposed by pairs.

Ludics	Dialogue	
Positive rule	performing an intervention or commiting oneself (Brandom)	
Negative rule	recording or awaiting or being authorized	
Daïmon	giving up or ending an exchange	

The positive rule: "Proof" reading

$$\begin{array}{ccccc} \vdots & \vdots & \vdots \\ \underline{01 \vdash \Delta_1} & \underline{02 \vdash \Delta_2} & \underline{03 \vdash \Delta_3} \\ & \vdash 0, \Delta & & & \\ \vdots & \vdots & \vdots \\ \underline{P_1 \vdash \Delta_1} & \underline{P_2 \vdash \Delta_2} & \underline{P_3 \vdash \Delta_3} \\ & \vdash \underline{P, \Delta} & & & \\ \end{array}$$

- You decide to defend a formula P in the context Δ , (you do not know exactly what P is: it may be equal to $Q_1^{\perp} \otimes Q_2^{\perp}$ or equal to R_1^{\perp} or to $P_1^{\perp} \otimes P_2^{\perp} \otimes P_3^{\perp}$ or . . . ;
- You choose one of these possibilities : $P_1^{\perp} \otimes P_2^{\perp} \otimes P_3^{\perp}$;
- You are **committed** to P_1^{\perp} and P_2^{\perp} and P_3^{\perp} .

The positive rule: "Dialogue reading"

- At this time of the process you dispose of a set of loci in "positive" position. For example during a conversation, it is your turn of speech
- You have to choose a focus. You decide to speak about your next holidays. (here denoted by '0'). This locus is made to vary across the various manners a given theme may be addressed. "This year, for my holidays, I will go to the Alps (01) with friends (02) and by walking (03).

The negative rule: "Proof" reading

$$\frac{\vdots}{Proof reading} \frac{\vdots}{P \vdash \Gamma} \frac{\vdots}{\vdots} \frac{\vdots}{\vdots} \frac{\vdots}{P_1, \Gamma} \cdots \vdash 0 \star I_n, \Gamma}{\vdots} \frac{\vdots}{P_1, P_2, P_3, \Gamma}$$

- You want to refute the formula P. or defend the formula $P^{\perp} = (Q_1 \wp Q_2) \& (P_1) \& (P_1 \wp P_2 \wp P_3)$.
- You have to be ready to sustain this contradiction for all possible decompositions of P.

The negative rule: "Dialogue" reading

$$\frac{\vdots}{\vdash 0 \star l_1, \Gamma \quad \dots \quad \vdash 0 \star l_k, \Gamma \quad \dots \quad \vdash 0 \star l_n, \Gamma}{0 \vdash \Gamma}$$

This represents a receptive attitude: the locus is the one which has been selected in the other process (by your addressee). The different branches in your process represent a survey of all the various ways you may consider as possible ways to address this theme.

Convergence and divergence

- Convergence in dialogue holds as long as expectations from one speaker contain commitments of the other (pragmatics: "Be relevant!" replaced by "Keep convergent!")
- orthogonality = private communication
- non-orthogonality: normalization may yield side effects: public results of communication

$$\frac{\vdash Q_1, Q_2, \Gamma \dots \vdash P_1, P_2, P_3, |}{P \vdash \Gamma}$$
among authorizations

provided by interlocutor

The daimon rule

- In proof reading this represents the fact to abandon your proof search or your counter-model attempt.
- This represents the fact to close a dialogue (by means of some explicite signs: "well", "OK", ... or implicitely because it is clear that an answer was given, an argument was accepted and so on...).

Examples

Example of two elementary dialogues:

Example

The first one is well formed:

- Have you a car?
- Yes,
- Of what mark?

$$\begin{array}{c}
\vdots \\
\vdash \xi 010 \\
\hline
\underline{\xi 01} \vdash \\
\hline
\vdash \xi 0 \\
\hline
\xi \vdash
\end{array}$$

VS

Examples

The locus σ is a place for recording the answer:

Example

- Have you a car?
- Yes,
- Of what mark?
- Honda.

$$\frac{\xi 010k \vdash}{\vdash \xi 010}$$

$$\frac{\xi 01 \vdash}{\vdash \xi 0}$$

$$\frac{\vdash \xi 0}{\xi \vdash}$$

VS

The interaction reduces to:

Example

$$\frac{\sigma \mathbf{k} \vdash}{\vdash \sigma}$$

The mark of the car is "Honda".

This "assertion" is recorded by the speaker.

It is the function of $\mathcal{F}ax$ to interact in such a way that the design anchored on ξ_{010} is transferred to the address σ , thus providing the answer.

The second dialogue is ill formed:

Example

- Have you a car?
- No, I have no car.
- * Of what mark?

$$\frac{Fax_{\xi010,\sigma}}{\xi010 \vdash \sigma}$$

$$\vdash \xi01, \sigma$$

$$\frac{\xi0 \vdash \sigma}{\vdash \xi, \sigma} You_{1}$$

$$\vdash \xi0$$

$$\frac{\vdash \xi0}{\xi \vdash }$$

$$\frac{\vdash \xi0}{\xi \vdash }$$

the dialogue fails because *YOU* did not planified a negative answer,

Modelling dialogue

Intervention of S	Current state	Intervention of A
\mathfrak{S}_1		
	$\mathfrak{E}_1=\mathfrak{S}_1$	
		\mathfrak{A}_2
	$\mathfrak{E}_2 = [[\mathfrak{E}_1, \mathfrak{A}_2]]$	
\mathfrak{S}_3		
	$\mathfrak{E}_3 = [[\mathfrak{E}_2, \mathfrak{S}_3]]$	
:	:	:
:	:	

Further developments

- K. Terui's c-designs : computational designs
 - from absolute addresses to relative addresses: variables of designs
 - ramifications replaced by named actions with an arity
 - finite objects: generators, in case of infinite designs
 - c-designs are terms which generalize
 λ-terms(simultaneous and parallel reductions via several
 channels)
- inclusion of exponentials (authorizes replay)

The introduction of variables allows to deal with designs with variables which correspond to designs with partial information (the whole future may stay unknown)

