Extending Lambek grammars:
a logical account of minimalist grammars

Alain Lecomtef and Christian Retorél

TUFR 7”Sciences de 'Homme et de la Société”, Université Pierre Mendes-France,
BSHM - 1251 Avenue Centrale,
Domaine Universitaire de St Martin d’Heres
BP 47 - 38040 GRENOBLE cedex 9, France
Alain.LecomteQupmf-grenoble.fr

IIRIN, Université de Nantes
2, rue de la Houssiniere BP 92208
44322 Nantes cedex 03, France
retore@irisa.fr

Paper ID: ACL-2001-0075

Keywords: syntax, minimalist grammars, categorial grammars, resource logics, Montague
semantics

Contact Author: author of record (for correspondence)

Under consideration for other conferences (specify)? Not submitted elsewhere. Partly
presented to Formal Grammar 99 and Logic Language and Computation — workshops
without proceedings

Abstract

We provide a logical definition of Minimalist grammars, that are Stabler’s
formalization of Chomsky’s minimalist program. Our logical definition, even simpler
than the original one, leads to:

- a neat relation to categorial grammar, yielding a treatment of Montague semantics.
- a parsing-as-deduction in some resource sensitive logic

- a learning algorithm from structured data based on a typing-algorithm and
type-unification.

Our view of minimalist grammars also is an extension of Lambek grammars: we
keep their radical lexicalism and logical view. The generative capacity is increased
by using a mixed commutative / non commutative logic due to de Groote, and this
logic is not used as in Lambek grammars:

- product is essential, since it encodes movement

- up to now hypothetical reasonning is not needed, i.e. we only have elimination
rules as in classical (AB) categorial grammars or combinatory categorial grammars
- the proof determines the consumption of the valencies

- but word order is computed from the proof by a simple device (the relation
between word-order and valency-consumption is more flexible than in Lambek
grammars). This allows for a proper account of sophisticated syntactic contructions
(expletives, long-distance dependencies,...) and to compute Montague-like
semantics from syntactic analyses.

Extending Lambek grammars:
a logical account of minimalist grammars

Paper-ID: ACL-2001-0075

Abstract

We provide a logical definition of
Minimalist grammars, that are Sta-
bler’s formalization of Chomsky’s
minimalist program. Our logical
definition, even simpler than the o-
riginal one, leads to a neat rela-
tion to categorial grammar, (yield-
ing a treatment of Montague seman-
tics), a parsing-as-deduction in a re-
source sensitive logic, and a learn-
ing algorithm from structured da-
ta (based on a typing-algorithm and
type-unification). Here we empha-
size the connection to Montague se-
mantics which can be viewed as a
formal computation of the logical
form.

1 Presentation

The connection between categorial grammars
(expecially in their logical setting) and min-
imalist grammars, which has already been
observed and discussed (Retoré and Stabler,
1999), deserve a further study: although they
both are lexicalized, and resource consump-
tion (or feature checking) is their common
base, they differ in various respects. On
the one hand, traditional categorial gram-
mar has no move opertation, andf usually
have a poor generative capactity unless the
good properties of a logical system are dam-
aged, and on the other hand minimalist gram-
mars even though they were provided with a
precise formal definition (Stabler, 1997), still
lacks some computational properties that are
crucial both from a theoretical and a prac-
tical viewpoint. Regarding applications, one
needs parsing, generation or learning algorith-
m, and, considering more conceptual aspect-

s, such algorithms are needed too to confir-
m or infirm linguistic claims regarding econ-
omy or efficiency. Our claim is that a logical
treatment of these grammars leads a simpler
description and well defined computational
properties. Of course among these aspects the
relation to semantics or logical form is quite
important; it is claimed to be a central notion
in minimalism, but logical forms are rather
obscure, and no computational process from
syntax to semantics is suggested. Our logical
presentation of minimalist grammar is a first
step in this direction: to provide a description
of minimlist grammar in a logical setting im-
mediately set up the computation framework
regarding parsing generation and even learn-
ing, but also yields some good hints on the
computational connection with logical forms.

The logical system we use, a slight exten-
sion of (de Groote, 1996), is quite similar to
the famous Lambek calculus (Lambek, 1958),
which is known to be a neat logical system.
This logic has recently shown to have good
logical properties like the subformula proper-
ty which are relevant both to linguistics and
computing theory (e.g. for modelling concur-
rent processes). The logic under considera-
tion is a superimposition of the Lambek cal-
culus (a non commutative logic) and of in-
tuitionistic multiplicative logic (also known
as Lambek calculus with permutation). The
context, that is the set of current hypothe-
ses, are endowed with an order, and this or-
der allows for a distinction between unordered
features (commutative product) and ordered
features (non commutative product). There
is nevertheless a relation between the prod-
ucts, or orders: some rules allows allows for
ordered formulae to become unordered, while
the converse is not allowed.

Having this logical description of syntactic

analyses allows to reduce parsing (and pro-
duction) to deduction, and to extract logi-
cal forms from the proof with a close connec-
tion as the one between analyses and Lambek
grammars and Montague semantics.

2 The grammatical architecture

The general picture of these logical grammars
is as follows. A lexicon maps words (or, more
generally, items) onto a logical formula, called
the (syntactic) type of the word. Types are
defined from syntactic of formal features P
(which are propositional variables from the
logical viewpoint):

e categorial features (categories) involved
in merge:
BASE = {c,t,v,d,n,...}

e functional features involved in move:
FUN = {k,K,wh,...}

The connectives in the logic for construct-
ing formulae are the Lambek implications (or
slashes) \,/ and product e together with the
commutative product of linear logic ®.

Once an array of items has been selected,
a sentence (or any phrase) is a deduction of
IP (or of the phrasal category) under the as-
sumptions provided by the syntactic types of
the involved items. This first step works ex-
actly as Lambek grammars, except that the
logic and the formulae are richer.

Now, in order to compute word order,
we proceed by labelling each formula in the
proof. These labels, that are called phono-
logical and semantic features in the transfor-
mational tradition, are computed from the
proofs and consist of two parts that can be
superimposed: a phonological label, denoted
by /word/, and a semantic label? denoted by
(word) — the superimpostion of both label
being denoted by word. The reason for hav-
ing such a double labelling, is that, as usu-
al in minimalism, semantic and phonological

!The logical system also contains a commutative
implication, —o, but it does not appear in the lexi-
con, and because of the subformula property, it is not
needed for the proofs we use.

*We prefer semantic label to logical form not to
confuse logical forms with the logical formulae present
at each node of the proof.

features can move separately. It should be ob-
served that the labels are not some extraneous
information; indeed the whole information is
encoded in the proof, and the labelling is just
a way to extract the phonological form and
the logical form from the proof.

We rather use chains or copy theory
than movements and traces:
bel or one aspect (semantic or phonolog-
ical) has been met it should be ignored
when it is met again. For instance a label
Peter(Mary)lovesMary corresponds to a se-
mantic label (Peter)(Mary)(love) and to the
phonological form /Peter//loves//Mary/.

one a la-

3 Logico-grammatical rules for
merge and phrasal movement

Because of the sub-formula property we need
not present all the rules of the system, but
only the ones that can be used accoridng to
the types that appear in the lexicon. Further
more, up to now there is no need to use intro-
duction rules (called hypothetical reasoning
in the Lambek calculus): so our system looks
more like Combinatory Categorial Grammars
or classical AB-grammars. Nevertheless some
hypothesis can be cancelled during the deriva-
tion by the product-elimination rule. This is
essential since this rule is the one representing
chains or movement.

We also have to specify how the labels are
carried out by the rules. At this point some
non logical properties can taken into account,
for instance the strength of the features, if
we wish to take them into account. They are
denoted by lower-case variables. The rules
of this system in a Natural Deduction format
are:

'+z:A/B Abvy:B
AR zy: A
AFy:B T'Fz:B\A
AT Hyz: A
I[(A; Ag)] - A
T[(A1,A2)] - A

[/ E]

entropy

lFa:A®B Azxz:Ay:BF~vy:C
I AEAle/{z,y}] : C

[®F]

This later rule encodes movement and de-
serve special attention. The label y[a/{z, y}]
means the substitution of a to the unordered
set {z, y} that is the simultaneous substitu-
tion of « for both = and y, no matter the or-
der between x and y is. Here some non logical
but linguistically motivated distinction can be
made. For instance according to the strength
of a feature (e.g. weak case k versus strong
case K), it is possible to decide that only the
semantic part that is («) is substituted with
x.

In the figure 3, the reader is provided with
an example of a lexicon and of a derivation.
The resulting label is (abook)readsabook
phonological form is /reads//abook/ while
the resulting logical form is (abook)(reads).

Observe that language variation from SVO
to SOV does not change the analysis. To
obtain the SOV word order, one should sim-
ply use K instead of k in lexicon, and use the
same analysis. The resulting label would be
abookreadsabook which yields the phonologi-
cal from /abook//reads/ and the logical form
remains the same (abook)(reads).

Observe that although entropy which sup-
press some order has been used, the labels
consists in ordered sequences of phonological
and logical forms. It is so because when using
[/ E] and [\ E], we necessarily order the label-
s, and this order is then registered inside the
label and never destroyed, even when using
the entropy rule: at this moment, it is only
the order on hypotheses which is relaxed.

In order to represent the minimalist gram-
mars of (Stabler, 1997), the above subsystem
of PdG is enough and the types appearing in
the lexicon also are a strict subset of all pos-
sible types:

Definition 1 MG-proofs contain only three
kinds of steps:

e implication steps (elimination rules for /

and \)

e tensor steps (elimination rule for ®)

e entropy steps (entropy rule)

Definition 2 A lexical entry consists in an
aziom = w : T where T 1is a type:

((F2\(F5\...(F,\(G1®G2®...9G,®A))))/ F1)
where:

e m and n can be any number greater than
or equal to 0,

o F, ..., F, are attractors,

L4 Gl,

, G, are features,

A is the resulting category type

Derivations in this system can be seen as
T-markers in the Chomskyan sense. [/E] and
[\E] steps are merge steps. [QE]| gives a coin-
dexation of two nodes that we can see as a
move step. For instance in a tree presenta-
tion of natural deduction, we shall only keep
the coindexation (corresponding to the can-
cellation of A and B: this is harmless since
the conclusion is not modified, and make our
natural deduction T-markers.

Such lexical entries, when proceeded with
MG-rules include to Stabler minimalist gram-
mars; this system nevertheless overgenerate,
because some minimalist principles are not
yet satisfies: they correspond to constraints
on derivations.

3.1 Conditions on derivations

The restriction which is still lacking concerns
the way the proofs are built. Observe that
this is an algorithmic advantage, since it re-
duce the search space.

The simplest of these restriction is the fol-
lowing: the attractor F in the label L of the
target 3 locates the closest F’ in its domain.
This simply corresponds to the following re-
striction.

Definition 3 (Shortest Move) : A MG-
proof is said to respect the shortest move con-
dition if it is such that hypotheses are dis-
charged in a First In, First Out order.

Figure 1: reads a book

reads == + reads: ((k\vp)/d)
a 2= Fa:((d®k)/n)
book 1= F book:n
Freads : ((k\vp)/d) z:dFx:d]
y:kFy:k a;:dl—readsa;:(E\vp)[\E]
Fa:((d®k)/n) Fbook:n y:k;z:dFyreads z: vp
= [/ E] = [entropy]
Fa book : d ® k y:k,z:dFyreads z : vp B
02
F (a book) reads a book : vp
4 Extension to head-movement
o[l {A, A FC
We have seen above that we are able to ac- [MA]

count for SVO and SOV orders quite easily.
Nevertheless we could not handle this way V-
SO language. Indeed this order requires head-
movement and head-movement is also needed
for the head-movement of the verb to the in-
flexion node which is needed for the verb sub-
ject agreement.

In order to handle head-movement, we shall
use the non-commutative product e as whose
elimination rule is quite similar to the com-
mutative product.

F'Fa:AeB Af(z:Ay:B)F~v:C
L AFqle/(zy)i]: ©

[®F]

Accordingly types will be not only of the
shape given in definition ?? but can also
be non-commutative product of such types.
The non commutative product is needed be-
cause of the following linguistic constraint: a
head-movement never crosses another head-
moveinent.

Nevertheless it is possible that a head-
movement crosses a phrasal movement. Our
logical system is well designed for this pos-
sibility. Indeed the possibility to relax
the order among hypotheses, expressed by
the following rule, excalty allows for head-
movement to cross phrasal ones, without al-
lowing that head-movement to corss other
head-movements.

O[{(T;A), AN FC

As a first example, let us take the very sim-
ple example of:

peter loves mary

Starting from the following lexicon in fig-
ure 4 we can build the tree given in the
same figure; it represents a natural deduc-
tion in our system, hence a syntactic anal-
ysis. The resulting phonological form is
/Peter//loves//Mary/ while the reulsting
logical form is (Peter)(Mary)(loves) — the
possibility to obtain SOV word order with a
K instead of a k also applies here.

5 The interface between syntax
and semantics

In categorial grammar (Moortgat, 1996), the
production of logical forms is essentially based
on the association of pairs < string, type >
with lambda terms representing the logical
form of the items, and on the application of
the Curry-Howard homomorphism: each (/ or
\) -elimination rule translates into application
and each introduction step into abstraction.
Compositionality assumes that each step in
a derivation is associated with a semantical
operation.

In generative grammar (Chomsky, 1995),
the production of logical forms is in last part

Figure 2: Peter loves Mary

loves == Floves: ((k\ip)/vp) e ((k\(d\vp))/d)
peter = Fopeter :k®d
mary == Fmary:k®d

ip

peter (peter)

1

k (k\ip)

A

((k\ip) /Vp

of the derivation, performed after the so-
called Spell Out point, and consists in move-
ments of the semantical features only. Once
this is done, two forms can be extracted from
the result of the derivation: a phonological
form and a logical one.

These two approaches are therefore very d-
ifferent, but we can try to make them clos-
er by replacing semantic features by lambda-
terms and using some canonical transforma-
tions on the derivation trees.

Instead of converting directly the deriva-
tion tree obtained by composition of types,
something which is not possible in our trans-
lation of minimalist grammars (we shall see
why latter on), we extract a logical tree from
the previous, and use the operations of Curry-
Howard on this extracted tree. Actually, this
extracted tree is also a deduction tree: it rep-
resents the proof we could obtain in the se-
mantic component, by combining the seman-
tic types associated with the syntactic ones
(by a homomorphism A to specify). Such a
proof is in fact a proof in implicational intu-
itionistic linear logic.

(d\vp)
(m_agy)/_
k (k\(d\vp))
/\
(to love) mary

(&\(a\vp))/a)* @

5.1 Logical form for example 4

Coindexed nodes refer to ancient hypotheses
which have been discharged simultaneously,
thus resulting in phonological features and se-
mantical ones at their right place®.

By extracting the subtree the leaves of which
are full of semantic content, we obtain a struc-
ture that can be easily seen as a composition:

(peter)((mary)(to_love))

If we replace these ”semantic features” by \-
terms, we have:

(Au.u(peter), (Au.u(mary), Az.\y.love(y, x)))

This shows that necessarily raised constitu-
ants in the structure are not only ”syntacti-
cally” raised but also ”semantically” lifted, in
the sense that Au.u(peter) is the high order
representation of the individual peter.

5.2 Subject raising

Let us look at now the example:

mary seems to work

3For the time being, we make abstraction of the
representation of time, mode, aspect... that would be
supported by the inflection category.

Figure 3: Mary seems to work

seems
mary =
to work =

ip

mary (m/ary)//\

- seems : ((K\ip)/vp) » (vp/vp)
Fmary:d®k
F to work : (d\vp)

K (k\ip)

seemsz/\

((k\ip)/vp)

From the lexicon in figure 5.2 we obtain the
deduction tree given in the same figure.

This time, it is not so easy to obtain the
logical representation:

seem(to_work(mary))

The best way of doing consists in assuming
that:

e first, the verbal infinitive head (here to
work) applies to a variable z which occu-
pies the d-position,

e then, the semantics of the main verb
(here to seem) applies to the result, in
order to obtain seem(to_work(z)),

e the = variable is abstracted in order
to obtain Az.seem(to_work(z)) just be-
fore the semantic content of the specifier
(here the nominative position, occupied
by Au.u(mary)) applies.

This shows that the semantic tree we want
to extract from the derivation tree in type-
s logic is not simply the subtree the leaves
of which are semantically full. We need in
fact some transformation which is simply the
stretching of some nodes. These stretchings
correspond to —-introduction steps in a Nat-
ural deduction tree. They are allowed each

vp

(to seem)

(vp/vp)? vp

W{to work)

d! (d\vp)

time a variable has been used before, which
is not yet discharged and they necessarily oc-
cur just before a semantically full content of
a specifier node (that means in fact a node
labelled by a functional feature) applies.
Actually, if we say that the tree so obtained
represents a deduction in a ND-format, we
have to say what formulae it uses and what
formula it demonstrates. We must there-
fore define a homomorphism between syntac-
tic and semantic types.
Let H be this homomorphism.

We shall assume:

e H(ip)=t, H(vp)e{t,(e — t)},

H(d)=e,
* H(a\b)=H(b/a)= (H(a) —H(b)),

o VI, H(f)e{((e —» X) —» X),(X — X)}
4

With this homomorphism of labels, the trans-
formation of trees consisting in stretching
”intermediary projection nodes” and erasing
leaves without semantic content, we obtain

X is a variable of type, something that can be seen
at first sight as a possible cause of undecidability, in
fact we shall see later on that the instanciation of X
is always strightforward. Moreover, when ¥ is of type
(X — X), it is in fact endowed with the identity
function.

Figure 4: Mary seems to work

{mary,e} :k®d

[loves : ((k\ip)/vp)] ® [¢ : ((k\(d\vp))/d)]
[seems : ((k\ip)/vp)] ® [¢ : (vp/vp)]

mary =
peter = {peter,e} :k®d
loves =
seems =
to_work = [to work : (d\vp)]

from the derivation tree of the second exam-
ple, the following ”semantic” tree:

seem(to_work(mary))
t
,/\
Au.u(mary) Az.seem(to_work(x))

((e = t) = t) (e — t)!

t
/\

Av.seem(v)

(t — t) t

to_work(z)

Unfortunately, such rigid assignment can-
not be made in all cases. For instance, for
phrasal movement (say of a d to a k) that
depends of course on the particular k-node
in the tree (for instance the situation is not
necessary the same for nominative and for ac-
cusative case). In such cases, we may assume
that multisets are associated with lexical en-
tries instead of vectors. We can therefore as-
sume phonological assignments like the five
first ones in figure 4.

5.3 Reflexives

— —— Let us try now to enrich this lexicon by con-

Ay.towork(y)
(e = t)

where coindexed nodes are linked by the dis-
charging relation.

Let us notice that the characteristic weak or
strong of the features may often be encod-
ed in the lexical entries. For instance, Head-
movement from V to I is expressed by the fact
that tensed verbs are such that:

e the full phonology is associated with the
inflection component,

e the empty phonology and the semantics
are associated with the second one,

e the empty semantics occupies the first
one’

6

5We must not confuse the ”empty” semantics and
the identity function. Empty semantics means that
the node will be really empty, and therefore erased
when passing from the syntactic tree to the semanti-
cal one. Nodes affected by the identity function are
not erased, their semantical content is simply used in
order to preserve the semantics obtained in the previ-
ous steps.

This is correct as long we don’t take a semantical
representation of tense and aspect in consideration.

z
el

sidering other phenomena, like reflexive pro-
nouns. The assignment for himself is giv-
en in figure 5.3 — where the semantical type
of himself is assumed to be ((e — (e —
t)) — (e — t)). We obtain for paul shaves
himself as the syntactical tree something
similar to the tree obtained for our first lit-
tle example (peter loves mary), and the se-
mantic tree is given in figure 5.3.

6 Remarks on parsing and learning

In our setting, parsing is reduced to proof
search, it is even optimized proof-search: in-
deed the restriction on types, and on the
structure of proof imposed by the shortest
move principle and the absence of introduc-
tion rules considerably reduce the search s-
pace, and yields a polynomial algorithm. N-
evertheless this is so when traces are known:
otherwise one has to explore the possible
places of theses traces.

Here we did focus on the interface with se-
mantics. Another excellent property of cate-
gorial grammars is that they allow, especially
when there are no introduction rules for learn-
ing algorithms, which are quite efficient when

Figure 5: Computing a semantic recipe: shave himself

shaves == [shaves: D : ((k\ip)/vp)] ® [€ : Az.\y.shave(y, z) : ((k\(d\vp))/d)]
himself == [e: u.dz.u(z,2) : k| @ [himself : z : d]
shave(paul,paul)
t
A
Au.u(paul) Az.shave(z, z)
(e = t) = t) (e —t)2
!
shave(z,z)
t

-

z

e2

applied to structured data. This kind of algo-
rithm applies here as well when examples are
derivation. Indeed the algorithm consists in
computing a most general typing to a deriva-
tion and then to unify the types of the same
word in different examples or positions. App-
plied to our derivation this learning algorith-
m works just the same: there are also most
general types for derivations, and unification
works just the same. Nevertheless, because of
movement learning from string which is pos-
sible for usual categorial grammars by trying
any possible derivation, is much more compli-
cated.

7 Conclusion

In this paper, we have tried to bridge a gap
between minimalist program and the logical
view of categorial grammar. We thus ob-
tained a description of minimalist grammars
which is quite formal and allows for a bet-
ter interface with semantics, and some usual
algorithms for parsing and learning.

Az.shave(z, z)
(e > t)

)\u.)\z.zz)//\
(e—= (e —=t)) — (e > t))

Az.Ay.shave(y,)
(e — (e — t)1)
I
Ay.shave(y, x)
(e = t)

/\

Az Ay.shave(y,) x
(e— (e—1t) el

References

Noam Chomsky. 1995. The minimalist program.
MIT Press, Cambridge, MA.

Philippe de Groote. 1996. Partially commuta-
tive linear logic: sequent calculus and phase se-
mantics. In Michele Abrusci and Claudia Casa-
dio, editors, Third Roma Workshop: Proofs and
Linguistics Categories — Applications of Logic
to the analysis and implementation of Natural
Language, pages 199-208. Bologna:CLUEB.

Joachim Lambek. 1958.
sentence structure.
monthly, 65:154—-169.

The mathematics of
American mathematical

Michael Moortgat. 1996. Categorial type logic.
In J. van Benthem and A. ter Meulen, editors,
Handbook of Logic and Language, chapter 2,
pages 93-177. North-Holland Elsevier, Amster-
dam.

Christian Retoré and Edward Stabler. 1999.
Resource logics and minimalist grammars:
introduction. In Christian Retoré and
Edward Stabler, editors, Resource Logic-

s and Minimalist Grammars, FEuropean
Summer School in Logic Language and
Information, Utrecht. FoLLIL. RR-3780

http://www.inria.fr/RRRT /publications-
eng.html.

Edward Stabler. 1997. Derivational minimalism.
In Christian Retoré, editor, Logical Aspects of
Computational Linguistics, LACL‘96, volume
1328 of LNCS/LNAI, pages 68-95. Springer-
Verlag.

