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Abstract. In this paper, we aim at giving alogical account of the representationalist
view on minimalist grammars by refering to the notion of Proof-Net in Linear Logic.
We propose at the same time a hybrid logic, which mixes one logic (Lambek calculus)
for building up elementary proofs and another one for combining the proofs so
obtained. Because the first logic is non commutative and the second one is com-
mutative, this brings us a way to combine commutativity and non commutativity
in the same framework. The dynamic of cut-elimination in proof-nets is used to
formalise the move-operation. Otherwise, we advocate a proof-net formalism which
allows us to consider formulae as nodes to which it is possible to assign weights
which determine the final phonological interpretation.
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1. Introduction

The basic idea concerning the use of Proof-nets is to consider words and
expressions as building blocks in the construction of proofs of sequents.
These building blocks are called modules, they correspond to Proof-
nets where some premisses are mere hypotheses. This conception has
many relations with works on partial proof-trees (PPTs) in the context
of Tree Adjoining Grammars (Joshi and Kullick, 1997). Like in the
case of PPTs, we are led to hybrid logics in order to give a precise
logical formulation of combining PNs: we need a logic for building
up elementary proofs and then we need another one for combining
these proofs. One of the particularities of our approach is that we
shall not use some special rules for combining proofs like stretching
in PPTs. Another particularity consists in using proof-nets, whereas
in the Joshi-Kulick-KKurtonina approach, it is claimed that Natural
Deduction trees exactly provide what is needed for linguistic purposes
(Joshi and Kullick, 1997). Our motivation for it is that the proof-
net machinery allows a better formalisation of move-operations by
means of cut-elimination, where cut-formulae are complex formulae (®-
conjunctions and g -disjunctions). The Minimalist Program (Chomsky,
1996) also makes reference to features which are either weak or strong:
this suggests that if we treat features as atomic types (similarly to
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(Cornell, 1998)), then these types, when considered nodes in a net, can
receive inequal strengths which could explain how variants of the same
sentence can be produced.

2. Two logics

The use of the Lambek calculus (L) with product, in the context of
so-called Lambek grammars, requires that the hypotheses be totally
ordered. Moreover, its absolute lack of structural rules makes it difficult
to reuse a lexical type, even if it is what happens in some linguistic
phenomena like cyclic movement. The operation Move, of frequent use
in Minimalist Grammars (Stabler, 1997) cannot be conveniently repre-
sented in this framework. Let us imagine that for instance we want to
describe an up- and left-ward movement of a constituant with regards
to a verbal head. We would like then the d-constituant be used twice
: one time at the position where it is selected by the verbal head, and
another time at the position where it receives case. We could think
of a product type associated with each determiner phrase, something
like: d@case (or d® k like it will be noted further) but even if so, the
Lambek calculus fails because it cannot express any kind of wrapping.
The solution we shall propose to this problem consists in adding an
upper level to this rudimentary logic: a level in which it becomes easy
to manipulate ready made proofs in L.

We call module a partial proof in a sequent calculus (and later on, a
partial proof-net representing this partial proof). A proof is said to be
partial if it uses (not discharged) hypotheses.

Let us see for instance what could be a "module” associated with a
transitive verb, say to like (where d denotes the determiner category,
which is a categorial feature, k the requirement for a case-feature,
which is a functional feature, and vp the verbal phrase category) .

to like [1]:

@ O, (R\(d\vp))/)" @ ((K\(d\vp))/d)" # d’~o(k\(d\vp))*) & (K" & (K\(d\vp))*-0
(d\vp)) I (d\vp)

This module uses proofs (or more precisely : conclusions of those proofs)

and hypotheses.

— d®kis a hypothesis,
— ((k\(d\vp))/d)! is "proved” by the lexical item to like,

— ((k\(d\vp))/d) e d—o(k\(d\vp)) is a correct deduction in L,
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— the same for : k e (k\(d\vp))—o(d\vp),

— indices (1,2, 3,4) relate formulae which will be linked by an axiom
in the final proof

Finally, this deduction relation says that:
— if we have the hypothesis d @ k

— and proofs of

o ((x\(d\vp))/a),
o ((k\(d\vp))/d)ed-o(k\(d\vp))
e ke (k\(d\vp))-o(d\vp)

then, by combining them, we can have a proof of (d\vp), with this proof
built with axiom links as indicated by the indices. We show this proof
in Figure 1 where:

— v is an abbreviation for ((k\(d\vp))/d)
— vl an abbreviation for (k\(d\vp))
— v2 an abbreviation for (d\vp)

It is important to notice about this proof that ’e’ is treated like '@’ in
the assembly logic. We nevertheless keep the connective ’o’ for inter-
pretation in the internal logic (the interpretation provides the correct
labelling). When reading the proof from the top, the product ’e” and a
deliberate order on conjuncts are introduced rather than the product
'@’ simply to satisfy the requirements of the internal logic.

Of course, such a module can also be represented by a tree (because
we remain in an Intuitionistic framework). This tree is given on figure 2
(with conclusions on the top, premisses and hypotheses at the bottom).
Let us imagine now that we have a module associated with a d-phrase:

mary : k, mary : d = {mary, mary} :k®d [2]

This module says that the item mary provides two informations, a cate-
gorial one (d) and a functional one: it requires a case, something which
is denoted by k. These two informations together give a ®@-product,
each component of which is labelled by the phonological form mary.
By applying the cut-rule between [1] and [2], we obtain:

to like : ((K\(d\vp))/d)' @ ((R\(€\vp))/d)" @ mary : d-o(k\(d\vp))*)®
(mary : X o (k\(d\vp))*~o(d\vp)) I (d\vp)
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kHFk viFvl
vhkv dFd k,vikkevl v2Fv2
v,d-ved vl, (ke vl—ov2),kF v2

v, (ved-ovl), (kevl-ov2),d kit v2
v,((ved-ovl) ® (ke vl-ov2)),d kt v2
v® ((ved-ovl)® (kevl-ov2)),d, kF v2
v@ ((ved—ovl) @ (kevl-ov2)),d@ kF v2

Figure 1. A verbal module as a proof

(d\vp)

PN

k (k\(d\vp))
((k\(d\vp))/d) d

to like

Figure 2. Partial proof-tree

Word order then follows by propagation of the labels. Labels (= words)
are transmitted by axiom links, and new labels are built inside the in-
ternal logic, according to the usual conventions on labelling in Lambek
grammars.

Here for instance, the label to like is transmitted by an axiom link to the
left conjunct of the first e-product, giving in ? a concatenation of labels:
to like mary, which is in its turn transmitted to the right conjunct of
the second e-product, thus finally giving a type labelled with mary to
like mary. If we are in a SVO language, in fact the weak k is empty thus
producing to like mary, but if we are in a SOV language, k is full and
its second occurrence is deleted, according to the Move theory, thus
resulting in mary to like: this labelling, depending on the parameter
weak /strong associated with a feature, will be made more explicit in
section 4 where the use of nets and paths defined in them will reveal
more adapted to this problem.
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To sum up, we have used two logics. The first (internal) logic is a simple
base logic (Moortgat, 1997). We can choose L but because it seems (for
the time being) that we don’t need right rules, we can content ourselves
with:

Functional application:

a:Ap:A\BFaf:B

B:B/Aja:AF fa: B

Left introduction of e:
Ma:AG:B,AFC
ag: Ae BIAFC

Of course, this logic has no weakening, no contraction and no permu-
tation rules, and therefore e is non commutative.

The second logic (the external one) combines the conclusions of proofs
in the first one (some of which being simple extra-logical axioms, like
those directly associated with lexical entries! or simple hypotheses)
and considers them blocks to asembly. We can take the Multiplicative
fragment of Intuitionistic Linear Logic for this task, with the following
rules:

LABARC, Lea  arbn .
[, AOB,AFC [,AF A2B
' A I'.B.AF AR
BaFCr o) LARC o
[".T,A oB,AFC TFAoC

AFA [aziom]

TFA  TLAARC

I".T,AFC [Cui]
LABARC
[.B,AAFC  lcrenanse

where A, B... are hypotheses, extra-logical axioms or valid sequents
of the first logic, translated into linear implications, and I' and A are
sequences of such formulae. We assume that these formulae and their
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subformulae may bear indices which indicate where axiom links have
to be put (in order to make labels propagate).

In fact we shall use only a small subset of these rules: [® L], [axiom],
[CUT] and [exchange] because modules associated with lexical entries
will provide sequents with connectives already introduced.

3. Proof-nets

Because of the complexity of formulae and sequents, it is temptating
to represent proofs by proof-nets. Moreover, proof-nets have an ad-
vantage on proof-trees (even if we have often proof-trees rather than
nets for sake of simplicity): natural operations on trees are limited to
substituting a tree for one leaf at the same time, whereas in proof-nets,
as we shall see, the natural operation consists in linking arbitrarily
complex conclusions by a cut-link, thus allowing several substitutions
at the same time, something which is precisely what we want for the
formalisation of Move. This natural operation on proof-nets prevents
us from defining complex operations like adjunction or stretching when
using trees.

Proof-nets are generally conceived for one-sided sequents: that enforces
us to translate our deductions into a one-sided calculus. We shall use
MLL (Multiplicative Classical Linear Logic), the rules of which are:

L

Fa,a [aziom]

FT,A ALY

FT, T [Cui]
FLABAL LA EBA
FT,4p B,AY FT, A9B, A
-, A, B, A
FT, B, A, alcrchange]

Among all the proofs in MLL, intuitionistic proofs are distinguished by
means of polarities. There are two polarities, e, called Input (negative
polarity) and o, called Qutput (positive polarity). The two following
tables show how to give recursively its polarity to any formula from
the polarities of its subformulae:
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@felolle [e]e]

[ o [ellefe]o]

oleleflodel |

Intuitionistic proofs are those proofs which can be polarized by means
of these tables.

3.1. PROOF-NETS FOR MLL

Retoré(1996) gives a criterion for correct nets in MLL. It is based
on the notion of perfect matching. In what follows, we shall present
simplified forms of proof-nets: we will not have in fact to check the cor-
rectness of our PNs, just because we will start with modules, which are
proof-nets, and because we shall connect them only by operations (cut-
plugging and cut-elimination) of which we know that they preserve
any correctness criterion. Moreover, we shall represent formulae of
the internal logic with arrows in order to express non commutativity.
The links with arrows are considered black boxes for the upper level
logic: they recall the ordering convention in the internal logic (some-
thing needed for the labelling but only for it in fact), but they must be
replaced by @ in the external one, which ignores the non-commutative
product.

3.2. PROOF-NETS ASSOCIATED WITH MODULES

Of course, because we represent proofs in a one-sided calculus, external
formulae are transformed into their dual forms. Let us start for instance
from a valid sequent for this mixed logic:

v (((ved)—ovl)@((k e vl)—ov2)),k,d F v2
It translates into:
Fvlp (ved)@vit)p ((kevl)®v2l)),dt ki, v2

In Figure 3, we give two correct partial proof-nets, one associated with
the dualization of the verbal module [1], for the infinitive to like, and
the other with the dualization of [2]. It is important to see how they are
obtained: first, we build the tree of subformulae of each formula in each
sequent, second, we link by aziom links (horizontal upper links) pairs of
nodes labelled by dual atoms, (which communicate by axiom-sequents
in the sequential proof), third we connect undischarged hypotheses
(here d and k) by a g -link. Observe that ®@-links and p -links are
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at Kkt
Figure 8. PN associated with a transitive verb and with a det phrase

distinct: plain lines for the first ones and dashed lines for the second
ones. In Figure 4, we show how these two PNs can be plugged in order
to get a new correct PN, where cut-elimination can be performed.

3.3. PROOF-NETS AND (PSEUDO-) NATURAL DEDUCTION TREES

Because we are in Intuitionistic Logic, the proof-nets we build up in this
system have in fact a tree representation which corresponds to proofs
in Natural Deduction format.

In order to transform a proof-net into a Natural Deduction tree, we
perform the following operations.

— a negative tensor with positive premise A is replaced by a single
formula A,

— nodes of opposite polarities related by an axiom link are identified,
that means transformed into single positive nodes,

— negative p -links may be ignored, except if they may be associated
by a cut with a conclusion of another module,
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Figure 4. Plugging two PNs

~ \i_k %/dJ_
ary

Figure 5. Pseudo-Natural Deduction tree associated with Figure 4

— in case a negative p -link has to be associated by a cut with a
conclusion of another module, its conclusion is directly connected
to its components in the tree. When the cut is eliminated, this
connection is suppressed (with the p -link) and replaced by a
coindexation between the components in question.

For instance, figure 5 shows the translation of the proof-net obtained

by plugging [1] and [2].
These trees will be called pseudo ND-trees of course because they are
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mary : K (K\(d\vp))

to like: ((k\(d\vp))/d) mary:d

Figure 6. Tree equivalent to the PN after cut-elimination

not trees properly speaking, but after cut-elimination, we get back to
ordinary trees, like the one given in Figure 6.

4. Paths

4.1. (GENERAL DEFINITION

Because of their polarization, proof-nets allow the definition of paths,
which are very similar to those paths used by F. Lamarche (Lamarche,
1995) in finding a correctness criterion for Proof-Nets for Intuitionistic
Linear Logic (FEssential Nets). Lamarche’s paths have the following
definition:

Let us assume that x, y, z... denote nodes, and u, v, w ... denote
sequences of nodes representing paths. Let y be the unique positive
root of an essential net. Let Node(A) the set of nodes of A. Path(A)
is the smallest nonempty set Path(A) C Node(A)* closed under the
conditions below:

— Root yePath(A).

— Up If u.zePath(A) and if z’ is positive such that its predecessor
is z (in the tree-order from the root to the leaves), then:

u.z.z’€Path(A).

— Down If u.zePath(A) and z is negative and its predecessor z’ is
also negative, then u.z.z’€Path(A).

— DnTurn If u.zePath(A) and z is positive and z’ is linked to z by
an axiom link then u.z.z’€Path(A).

Let us call Path’(A) the set of reverse paths w.r.t. paths belonging to
Path(A), and starting from terminal input-nodes and directed towards
the final output.
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These paths are used to produce interpretations. We shall restrict our
attention to phonological interpretations.

For that, we imagine several tokens firing at the same time and starting
from terminal input nodes. These phonological tokens meet at ® nodes
and they merge at these nodes according to the labelling of functional
application rules.

A consequence of the convergence of reverse paths to the final output
is that a phonological token will always reach this output, and that it
will be made of the totally ordered set of phonologies.

4.2. TRAVELS ALONG PATHS DETERMINED BY WEAK AND STRONG
FEATURES

Tokens starting from @ -conclusions may have different trips according
to the relative strengths of their premisses. Let us preliminarilly define
a notion of heighth for (sub)formulae, in a given proof.

DEFINITION 1. An occurrence of a (sub)formula a is said to be im-
mediately higher than an occurrence of a (sub)formula b (a>b) in a
proof-net 7 if and only if:

— these two occurrences belong to a formula p(b)-oa, where p(b)
denotes a e-product,

— or a is linked by an axiom link to a formula a’ which is such that
a’>b,

— or a is a sister (= premisse of the same conclusion) of a (sub)-
formula a’ such that a™>b.

The relation a>*b is the transitive closure of the relation a>b. This
allows us to define the following trips for tokens:

Trips for phonological tokens:

Let a1t astp ...a,_11p a,ta p -conclusion (or chain), where a,, is
the only categorial feature, and all the other ones represent functional
features (like k, wh etc.) such that their duals aq, ag, ..., a, are totally
ordered for the relation >* (a; being the highest and a,, the lowest in
some proof-net )

— if among the a; (i<n) there are strong features, the full phonology
associated with the chain travels through the highest strong fea-
ture, and empty phonologies travel through all the other features,

— if there is no strong feature, the full phonology travels through the

categorial feature a,?.
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Figure 7. Peter loves Mary

Figure 7 shows the (simplified) complete module associated with the
sentence

Peter loves Mary

The phonology Peter loves Mary results from the fact that in English,
the nominative case is supposed to be strong, inflection weak and ac-
cusative also weak.

A strong inflection with weak nominative and accusative cases would
results in a VSO order and a weak inflection with a strong accusative
case in a SOV order.

5. More examples

5.1. NOMINATIVE CASE ASSIGNMENT

The previous example showed how to raise a d with regards to an
infinitival verbal head in order for it to receive an accusative case. By
doing so, we get an object of type (d\vp) which is still waiting for
another d and this other d also needs case but, according to the case-
theory, it must come from an inflection head. Finally, in order to select
the d-subject, the verbal module must be completed by an inflection-
module, in order to obtain a module for an inflected verb. Let us make
explicit this machinery for constructing intermediate modules by means
of more elementary ones.
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T

k (k,\ip)

/\
(3sp) : ((kn\ip)/vPp)
/\

(d\vp)

////////\\\\\\\\

K (k\(d\vp))

to like : ((k\(d\vp))/d) d!

Figure 8. Module for an inflected form

The proper inflection module is associated with the following sequent,
completed with indices for showing axiom-links.

i flection
(d\vp)',d* @ X", (a* o (d\vp)'-ovp") @ ((k.\ip)/vp)®
@(((ka\ip)/vp)® e vp'-o(k,\ip)") © (K’ @ (K, \ip)®oip) I ip
where:
— (d\vp), d @ k are hypotheses,

— ((k,\ip)/vp) is proved by an auxiliary (may, will, ...) or by a
terminal inflection (-s), or rather by an ”abstract” morphological
feature like (3sp) (for third person - singular - present).

This module can be plugged to the verbal one by means of the cut
rule, using the cut-formula (d\vp). Cut elimination and representation
in pseudo ND trees lead to Figure 8. where the index indicates that the
two nodes are linked to the same p -formula.

We link the nodes k and d which are still free to a same p -formula
ktp dt, in such a way that any nominal phrase, like Peter, of type
d®k can be plugged into that tree.

If ((k,\ip)/vp) is proved by an auxiliary like will, the construction ends
up, but if it is proved by some ”abstract” feature like (3sp), such an
abstract feature must be erased, it will be made by connecting inflt
and vt by a specific p -link, thus producing the conclusion infltp vt
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Figure 9. A big cp-module

(where ((k,\ip)/vp) is abbreviated by infl and ((k\(d\vp))/d) by
v), labelled by the inflected verbal form. We thus obtain the module
associated with a given inflected form. We may obviously assume this
module is already given in the lexicon®.

Again, the weak/strong opposition can be marked: categorial features
like here the inflection head may also be strong, thus resulting in a
raising move of the phonological content of the attracted verbal head

to the inflection head.

5.2. CycLIC MOVEMENTS

Cyclic movement supposes that a same feature is consumed several
times. Linear logic admits such situations by allowing us to use so-
called exponentials. Formulae which are -marked can be contracted and
weakened when on the left-hand side of an intuitionistic sequent. There
is also a transition to non-marked formulae by the Dereliction-rule:

T AFB

Sl b 5!
T,IA,F B D]

Let us suppose for instance we have a wh-expression which moves up
to the Spec-cp position of an embedding sentence (a phenomenon also
known as unbounded dependency), this can be represented by a module

associated with a sequent which proves 'wh @ k @ d, like for instance:
whom : Wh, whom : k., whom : d
{whom™, whom, whom} : Wh @k ®d

In order to plug this module at its proper place, a big cp-module has
to be built by combining smaller ones, which can have several wh, like
in Figure 9. The combination of the two modules results in linking the
components of:

7wht ktp d'to the features wh, wh, wh,k, d
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and if wh is a strong feature, according to the previous convention, the
phonological content raises up to the highest wh-node after having filled
all the other wh-nodes, and of course the lower k and d.

The requirement ”after having filled all the other wh-nodes” is never-
theless problematic because nothing prevents in pure logic that only
some of the nodes be connected, (and even none!).

At this point, we are enforced to delimitate some particular proofs in
the space of all proofs: the proofs which will be admissible for our
purpose.

DEFINITION 2. A proof will be said Move-admissible iff every cut-
tensor formula f"®Ra ® ..a, (where " means the ®-product of m
occurrences of £) which is built up in order to correspond to a given
chain ?tp a;tp ...p a,tis such that if the items £, a;, ..., a, are
in the total order given by the relation >*, there is no occurrence of £
strictly in between the highest one and a; which is not inside the
product or which belongs to a subformula which is not inside
the product.

6. Conclusion and further generalization

One could think equally possible to develop a proof system based on
formulae in which correct sentences would result from all the correct
proofs in that system. Many attempts to do that have shown that we
must always add special constraints in order to admit only some proofs,
those which correspond to some mysterious economy principle. The ad-
vantage of our system is that (except when using exponentials) we don’t
have to express such general extra-logical conditions. This is so because
we are working with ready made proofs where the problematic issues
are already solved. Because our "modules” are combined by means of
complex cut-formulae, we can directly have correct associations (cf.
which k goes with which d for instance?). It is only when we have to
introduce a p -link or generally when we are obliged to make a cut-
formula (that means a cut-formula not already given from the lexical
entry or the intermediate modules) that difficulties come and compel
us to restrict the space of all proofs.

This conception of minimalist grammars is similar to Cornell’s in (Cor-
nell, 1998), but it makes use of logical concepts already existing in
order to make a link with resource logics. Such a link would probably
help in implementing grammars of this kind by means of Programming
Languages based on Linear Logic (like Lolli).

Dealing with questions like island constraints is still missing. We plan
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to treat such questions by means of more values for the strength pa-
rameter. If besides w (for weak) and s (for strong), a third value b is
admitted, for blocked, we are able to give an account of examples like:
*John is likely that will leave
simply by assuming that John’s phonology is blocked at a b-feature and
that nominative k associated with the inflectional head has the value
b.
Moreover, this particular view on minimalist grammars seems to offer a
new opportunity to see grammatical representations as networks, where
nodes replace features. This may be an important turn just because
features can be viewed as connecting nodes and their parameters weak
or strong as the strength of these connections. This strength determines
the way in which phonological tokens are travelling. We have no room
here to explain the ”semantic trips”, but that would be similar. Actu-
ally, the semantic information ignores the weak/strong distinction and
always goes up to the highest node of the chain it is associated with.
We can see this as an opposition between the stability of the infor-
mation system and the unstability of the phonetic-perceptive one. If
a feature is wrongly assigned a weak value instead of a strong one,
that will result in a so-called "mistake” but most of the time, the
sentence will be still correctly semantically interpreted. Let us imagine
for instance an in situ question like: *Mary reads which book?.
We thus can assume that in learning language, children only learn to
specify the nodes strength and how sometimes to change it for reasons
of topicalization, yes-no questions and so on. Of course there can be
variations from an individual to another one, such variations could
be represented if we affected weights to nodes instead of the rough
opposition weak/strong.
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Notes

! It is the case of: ((k\(d\vp))/d) which is "proved” by the lexical item to like
2 We also think to introduce a third modality for the strength parameter: blocking
- see section 6 - which would behave like a feature which captures a full phonology,
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without allowing it to climb towards a higher position: this seems to be legitimate
with regards to islands phenomena.

® We thus let open the question whether the lexicon must include only lemmas
and morphemes or all the forms.
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