

Rebuilding MP on a Logical Ground

Alain Lecomte
Calligramme-LORIA

Abstract

We provide a logical system to express Minimalist Grammars, which aims at being ”minimal” in the
sense that it contains the least rules and the simplest lexical entries as possible. By limiting ourselves to
the proofs in that system that satisfy one constraint on hypotheses management, we simulate minimalist
derivations. This system is an elaboration on previous works by Lecomte and Retoré which were based on
a new use of the Lambek calculus, where words were no longer associated with formulae, but with axioms
and where a proof of a sentence was a proof of the theorem F ¢ instead of a proof of a sequent I' - ¢. Such
a calculus which suffered from limitations is here replaced by a version of partially non commutative linear
logic, due to P. de Groote, and we show that in this system, when we limit ourselves to special proofs,
we may mimick move (besides of course merge) for A-movement as well as head-movement. Moreover we
show that the use of second-order types, allowed by the categorial grammar tradition, brings solutions
for linguistic problems, including expletives and unbounded dependencies. We think that such a system
is legitimated by its strong logical foundation, the fact that complexity results can be exported and also
by philosophical reasons, which are linked to the way we may conceive logics: not only as a formalisation
of reasoning but as a theory of general objects.

1 Introduction

In in his "draft” paper of 1998 [4], entitled Minimalist Inquiries: the Framework. Chomsky starts from the
problem of what he calls design specifications.

Let us invent a evolutionary fable, keeping it highly simplified. Imagine some primate with
the human mental architecture and sensorimotor apparatus in place, but bo language organ. It
had our modes of perceptual organization, our propositional attitudes (beliefs, desires, hopes,
fears,...) insofar as these are not mediated by language, perhaps a ”language of thought” in Jerry
Fodor’sense, but no way to express its thoughts by means of linguistic expressions, so that they
remain largely inaccessible to it, and of course to others. Suppose some event reorganizes the
brain in such a way as, in effect, to insert FL. To be usable, the new organ has to meet ”legibility
conditions”.

The design problem consists in defining an optimal device which meets these legibility conditions. Of course
if that device also satisfies all other empirical conditions too: acquisition, processing, neurology, language
change, that would be an ”ideal” situation. Chomsky notes that this is obviously very unlikely... He therefore
looks for the minimal devices to add in order to satisfy all these constraints. Among these necessary devices,
Chomsky argues for the absolute necessity of at least two fundamental operations: Merge and Attract (see
also [3]). These operations must satisfy the Inclusiveness condition:

In the course of a derivation, no elements are introduced by Cyy,

That means that all the ”elements” (in fact features) must be provided with the lexical entries. Operations
of Cpy, can only manipulate them (delete them, duplicate them, permutate them...). Chomsky claims that

*I am grateful to Christian Retoré for many helpful discussions. The seminal idea to change the traditional way of using
systems like the Lambek calculus by using sequents with empty antecedents for typing linguistic expressions is his own. Of
course all errors or imperfections in this paper are mine.

Merge is obligatory for any language-like system: it takes object already constructed and forms from them
a new object. Attract seems, at first sight, motivated by an ”apparent imperfection” of human language:

commonly, phrases are interpreted in positions other than those where they are heard, though in
analogous expressions these positions are occupied, and interpreted under natural conditions of
locality.

Chomsky calls this fact the dislocation property. Dislocation of « yields a chain < «, a >. The raised element
c-commands its trace in the original position'. But this ”imperfection” can be related to another one in
such a way that, together, they resolve in only one imperfection. This second ”imperfection” concerns the
existence of uninterpretable features of lexical items, that violate the interpretability condition:

Lexical items have no features other than those interpreted at the interface, properties of sound and meaning

An example of such a feature is structural Case. In order to "minimalize” the number of devices to intro-
duce, we are lead to the assumption that dislocation is simply due to the need for deleting uninterpretabe
features. If this is true, features are attracted by so called attractors and attractors are deleted when they
have attracted their matching feature, something that Chomsky calls Suicidal Greed. Let us immediately
notice that, a la lettre, that means that some feature consumes another one and after deletes, and that,
therefore, there is some foundation to the idea which leads to a resource sensitive logics subjacent to that
mechanism.

In such a reasoning, Chomsky empirically ”finds” some operations which seem fundamental to him, and he
tries to define other operations (like Move) by composition of these ”primitive” operations. But of course
he does not adress the question whether these operations are really primitive and if there could not be other
operations, more primitive, that could generate them by composition, exactly like he does for Move. This
appears to be a matter of logical analysis rather than of empirical study. Nevertheless, there is no reason to
think that because it is logical analysis, it has no value... Simply because, like Chomsky himself claims it,
the study of FL (the faculty of language) requires a ”descriptive technology” which is not yet provided by
any ”direct” exploration of the way language works. At that stage, all instruments of thought can help, and
logics among them.

The system here presented is an elaboration on previous works by Lecomte and Retoré [13]. We essentially
try to give linguistic (and philosophic?) justifications to such a system and we propose some new solutions for
dealing with semantics, and with particular phenomena like remnant movements, head movements, expletives
and long distance effects.

2 A logical analysis of Merge

Let us therefore go back to the intuitions leading to Merge and Attract. The simplest way of characterizing
Merge is to consider that an object which already exists (either from the lexicon or by previous construction)
has some property which can only be satisfied by another object: that will put these two objects together,
and then, when the property will be satisfied, we shall consider it as ”inactive”. The simplest way to express
this kind of property is by means of a feature F. We say that an object O; has a feature F to satisfy. If O,
can satisfy this feature, we can say that it contains the complementary feature F’. O; and O» then merge,
that entails that F and F’ are no longer active. Maybe some other feature of the new object becomes active,
and the process can go on. Let us replace F by the notation /F, and F’ by the notation F. Because the
simplest items we can design are mere lists of features, let us suppose O; be ¢/F, and Oy be Fi, where ¢
and 1 are sublists of features, we can have something like:

[1] Merge : ¢/F Fp o

IBut Chomsky does not exclude cases where this relation can be violated, as in ”independent XP-dislocation, in which the
step-by-step locality and c-command relations for a; are obliterated at LF”, like:

[written t;for childrenl];, [those books]; couldn’t possibly be t;]

At this point, we must ask: what composition law puts together the features of a same lexical entry, and
then, of a same syntactic object? It is natural to assume that it is a kind of product, that we can denote by
o. What properties has this product? It is probably associative simply because, as we said above, we want
to have the simplest structures as we can, that means concerning features in an object, a structure either of
a (multi-)set or of a list, and not a tree-structure for instance, that would result from non-associativity. It is
probably non-commutative, because we know from previous works on generative grammar that the formation
of certain types of object must precede the formation of others. For instance, we remember the principles of
the X-theory according to which, from the bottom, lexical heads are at first merged with their complements,
in order to give a 1-bar object, and then and only then, this object can combine with a specifier in order to
give a 2-bar object. Such an ordering requires the features be ordered in a syntactical object and therefore
the product be non commutative. The question of neutral elements can be postponed, with its associate
question of the inverses?. With this product, we rewrite [1] as:

[2] Merge : G/F,FeipF peot)

If ¢ is empty, we get: ¢/F, F ¢, where we recognize the usual cancellation scheme in the very elementary
categorial grammars (Ajduckiewicz-Bar Hillel ones). In fact, this case is sufficient. Why? Now that we have
the operators / and e, we may recall some of the rules in the usual sequent presentation which manage them.

A+FA T,BT'FC T A,B,T'FC

; [L/] ————[Le]
T,B/A,AT' - C I,AeB,I'FC

These two rules are Introduction to the left for the two operators. In Natural Deduction, they are presented
as:

[A, B]!

A/B B :

— U/ AeB C

207 ey
or:
['-A/B AFB I'-AeB AABAFC
E) [eE]
[,AFA ATAFC

and they are called elimination rules.
These rules have of course their duals, expressed as Introduction to the right in the sequent presentation and
introduction rules in Natural Deduction:

F,AI—B[R/] THA AFB
T+ B/A T,AFAeB
r L4
: A B
—_ iep
B/A

We must also assume the identity rule?

AFA

2see [7] for a linguistic model which uses all the group operations
3In the usual ”tree”-presentation of Natural Deduction, such a rule cannot be apparent, it is only apparent in the sequent
calculus and in the sequent presentation of ND.

and therefore also, as a kind of dual principle, the cut rule:
A AAANFRC
AT, A" C

[cut]

Let us take the sequent [2] to prove with these rules, say in the sequent calculus, we get:

pFo YEY

F+F O,V pe)
O/F,F ¢+ peip
¢/F,Feipt ey

[Re]
(/]
[Le]

or, in the Natural Deduction style:

¢/F [F]'
¢ /8 [y
Fet St
pep

It is worth to notice here that two hypotheses are discharged at the same time by the rule [oE]: this will be
fruitful in future application of this rule to the analogue of Mowve.

This shows that Merge has in fact more primitive operations: rules for e and the elimination rule (or
introduction to the left, in the sequent presentation) for /.

Readers familiar with the Lambek calculus ([12]) recognize here this calculus. Of course, they are waiting
for the introduction of the reverse \. Why such an introduction is unavoidable? It is obviously because we
have assumed e non commutative. As it can be very easily seen, residuation laws hold in this calculus. We
have:

AeBFC & AFC/B
For reasons of symmetry, we get the operator \, in such a way that:
AeBFC & BF A\C

The \ operator is not superfluous. With the /, we were able to attach a syntactic object to the right of an-
other. If we follow the LCA convention of Kayne ([9]), that corresponds to the attachment of a complement.
Because it is assumed in this framework that trees are binary, if the head selects a new syntactic object, it
will be attached on the left, and therefore we shall have necessarily to use this \. That simply duplicates
the two rules for /, leading to analogous rules for \.

According to Chomsky, there are two instances of Merge: set-Merge and pair-Merge. Set-Merge is ”symmet-
ric”, in the sense that the object which is constructed from « and 3 is {«a,3} where either label can project.
Pair-Merge is asymmetric: it corresponds to the notion: ”A adjoins to B”, which is inherently different from
"B adjoins to A”. In the line of Chomsky’s thought, we can ask whether it is possible to treat these two
Merge in the same operations. In adjunction, "the adjoined element « leaves the category type unchanged”.
It is of course exactly what happens in our framework if some object « has type ¢e A/A and another one, 3,
type Aey. By "merging” the two objects in the set-merge sense, we get an object which has still the feature
(category) A, and therefore can be possibly selected by any object /A, exactly like it was the case for the
previous object .

3 Phonological interpretations

What happens to interpretable features, like phonological ones? Actually, we are lea d in our present
reasoning to depart from the Chomskyan conception of phonological features, for a very simple reason.

When using our Natural Deduction rules, we are in the following situation. At each step, we build a new
object: this object is a list of features, but if we want really have a derivational approach, or more precisely
a really markovian derivation, like Chomsky himself claims to want?, then we have to forget the tree-
structure itself which is below the root of the new object, which contains the result of the computation on
features. Therefore at each step we have to rearrange the phonological features of the ”premisses” objects,
in order to produce a new structure of the phonological features.

This leads to consider phonological features as labels, not in the chomskyan sense (for Chomsky, like for
Stabler, labels are the entire lists of features), but in the type-logical sense. This enriches our rules, in the
following way (cf. [15] for such a systematic labelling?).

AFpg:A F,'y:B,F'I—5:C[L/] AFgB: A F,v:B,F'I—5:C[L/]
[ya:B/A AT FélaB/y]C LA a: A\B, T+ d6[Ba/v]C
INa:A,B:BTI'FC 'Fa:A AFpB:B
[Le [Re]
IaB:AeB,I'+C AkFaf:AeB

Identity rules are labelled in the following way:

, F'Fa:A Az:AANFy:C
a:AF a: A laxiom] AT A /a0 [cut]
L] ye/e)

Of course, we shall treat later on semantic features in the same way, thus adopting a position which seems
to match precisely the view according to which:

we understand L to be a device that generates expressions EXP, EXP=<PHON, SEM>, where
PHON provides the ”instructions” for sensorimotor systems and SEM for systems of thought.

In effect, to assert that amounts precisely to consider PHON and SEM features differently with regards to
uninterpretable features. If the ideal picture was the case, that means if there were only interpretable features,
simply motivated by the functioning of the sensorimotor system and the thought system, we should have only
expressions consisting in this kind of pairs, but uninterpretable features bring a third component, in such a
way that we get expressions EXP, EXP=<PHON,UNINT, SEM>, where UNINT means ”uninterpretable”.
Merge and further Move steps are based on the consumption of uninterpretable features (either by selection
— and then ”inactivity”, which is equivalent to suppression — or by ”suicidal greed” in the case of Attract)
but at each step also, interpretable features are preserved and combined. Let us notice that this is not
contradictory with the inclusiveness condition.

Rules for e have this particular drawback that, when starting from the bottom (like the sequent calculus is
usually used), the determination of & and is not deterministic: if we have an object (lexical or syntactic)
Fe¢ endowed with a phonological feature o and we wish to use it in a derivation (that precisely means that
it occurs in the left-hand side of a sequent, and therefore subject to the [L e]-rule), we have nothing telling
us how to split the string a. For instance, we have several ways of rewriting the deduction of [2] (one for
each splitting of « into @ and «as):

fai ok PBar ¢ as:pFas
a:Fra) F Baq : d,as 1Y Bajas : e
B:¢/F,a;:Fiay ¢ F pa:per)
B:¢/F,a:Fept fa:pe)

But in fact it does not matter: what only interests us is the endowment of the resulting object, and every
splitting of « into (aq,as) gives of course the same result, simply because in a Merge step, a product is

[Re]
[L/]

[Le]

4Chomsky [p-24] requires the determination of the label of a category be "markovian”, requiring no information about the
derivation
5G. Morrill founds this labelling on the string semantics for such a system, in terms of ‘groupoid’ algebra.

decomposed (Fey)) and then recomposed (¢ o), and in both operations a; and as remain adjacent. We can
therefore adopt a convention telling that the phonological feature is always attached to the ”active” feature,
that amounts here to adopt the splitting of « into («,€) where € denotes the empty string.

It can also be interesting to show how things work in the Natural Deduction style. Here the labelled rules
are:

[z:Ay:B]
a:A/B ﬁ:B[/ |
af: A a:AeB 7:0[.E]1
a/zylC
I, [z: A}
a:AfB:B
pa: B wgAep

ﬁ:B/A[/IP

In the Natural Deduction style, hypotheses are explicit under the form of formulae inside square brackets with
an index, labelled with variables (x, y, ...). These variables range here over the set of strings representing
phonological features. In the [oE] rule, the constant string « substitutes for the concatenation zy of the two
string-variables. It is important here to notice that these string variables must be adjacent in order to make
a continuous string. Let us rewrite the proof of [2] in this Natural Deduction format.

a:¢/F [z:F]*
E
az: ¢ /8 [y : 9]
B:F e azxy : e
afB:pe)

In the third presentation, Natural Deduction in sequent format, left-hand sides of sequents are hypotheses and
premises mixed and right-hand sides are conclusions, we systematically employ variables to label hypotheses
and constants to label premises and conclusions depending on no hypotheses.

[o1]
[E]!

'a:A/B AI—,B:B[/E] Fa:AeB A,m:A,y:B,A'I—y:C[E
[]
Akl ap: A AT, A" FAylajzy] : C
Fe:Arax: B 'tra:A AFpB:B
[R/] [Re]
'+a:B/A At af:AeB

The same deduction (for [2]) has now the following appearance:

Fa:¢/F z:Fra:F

[/E

x:Flrazx:¢ y:z/Jl—yzz/J[.I]
FB:Fev x:F,y:¢Faxy:¢o¢[.E]
Faf:gey

Thus adopting Natural Deduction presentation, we can assume syntactical and lexical objets to be analogues
of theorems and azioms in a formal system. Lexical objects are proper azioms (that means non-logical ones)
labelled with a phonological feature (and further on a semantical one). Syntactic objects are theorems, that
means hypotheses free deduction relations. Let us try a short example, using simply Merge.

Lexicon:

reads = Freads: ((k\vp)/d)
a x= Fa:((dek)/n)
book = Ik book:n

Building a syntactic object: [3]

Freads : ((k\vp)/d) z:dbFz:d £
Fa:((dek)/n) I—book:n[E] z:dtFreads z : (k\vp) y:ktFy:k
Fa book : dek z:d,y:kt reads zy : (k\vp) ek
F reads a book : (k\vp) ek

[o1]

[¢E]

The object so obtained, as expected, has the phonological feature reads a book, and uninterpretable features:
(k\vp), k, in this order. It therefore contains a feature k and the corresponding attractor k\, and the
categorial feature vp.

There remains to explain how the attractor can attract its corresponding feature and then commit suicide
on itself.

4 A logical analysis of Attract+Move

As currently observed,

Attraction (hence movement) is driven by the need to delete an uninterpretable feature F; call
it the attractor.

A good example is provided by our previous one, which gives an object which has an uninterpretable feature
k\ to delete. At this point, Attract must construct a new object K, free of this uninterpretable feature. For
that:

The attractor F in the label L of the target [locates the closest F’ in its domain, attracting it
to the MLI of F.

In our example, the closest F’ is obviously k, which belongs to the same object. We can therefore assume
this k attracted by k\ such that both are deleted.
Suppose we had got as a concluding theorem:

reads a book : k e (k\vp)
We could have had trivially the following steps: ([4])

z:kbFz:k y:(k\vp)F: (k\vp)
F reads a book : k e (k\vp) z:k,y: (k\vp) F zy: vp

[+E]

F reads a book : vp

There would have been no problem in this case because the factors of the product type would have been in
the same order as the hypotheses to discharge, in conformity with the correct use of the [¢ E] rule. There
would have been in fact no significative difference between Merge and Abstract. But it appears in most cases
that phenomena are not so simple because the attracted feature is not at the right place where it can delete
the attractor by means of our usual rules. In fact, if this very particular situation was general... Attract
would not be Attract simply because the attracted feature would always been already attracted!

In the general case, the feature F’ must be displaced in order to satisfy the requirement of the attractor.
This can only be done if we allow to relaxz the order of the hypotheses at some steps of our proofs. Such
a relazation is usually associated with the rule called entropy rule in most works on partially commutative
linear logic ([6], [17], [1] -.-). It enforces us to assume from now on that two products are acting: one, already

known and expressing order (), and the other one, to introduce, which ignores the order (®). Both will
be supposed associative. Mechanically, the assomption of a new, commutative, product ® creates by the
residuation technique a new ”divisor”, let us denote it —o like in (commutative) Linear Logic ([8]). Moreover,
we must recall that products are the reflects (internal to types) of structural operators used to compose the
sequences of formulae on the left-hand side of the sequents (and also on the right-hand side when in a classical
calculus). We must therefore assume from now on that two such structural operators can occur that we will
denote:

, for®
i fore
We shall then assume the following structural rules:
L[(A; Ay FA
Tl(Ay, Aq) F Ao
L[((A1,A2),A3)] - A [[(A1, (A3, Az))| F A
®assl ®ass2
Tl(Ar, (B, Ay F 420 Tl((Ar).)] F 420
L((A1;Az); Ag)] - A L[(A1; (Ag; Ag)) - A
Tl(Ar: (Ao A F A D[((Br: Aa): Ag)] F 410
[[(A1, As)] + A[comm]
[[(As, A A
together with the following ”logical” rules:
l'ta:A/B AI—,B:B[/E] F'a:AeB A;m:A;y:B;A'I—y:C[E
[]
ARap: A AT A" FAylajay] - C
Fiz:Araz: B ''ra:A AFpS:B
[/1] [o]]
'a:BJ/A IAFaB:AeB
'ra:B—oA AFpB:B l'Fa:A®B Ajz:Ay:BF~:C
[-oE] [®E]
IAFA{a,B}: A A FAfe/{z,y}]: C
Ie: Ak {a,z}: B 'Fa:A AFB:B
[oI] [®I]
T'Fa:BoA [AF{a,8}:A®B

We have endowed these rules with phonological labels which respect commutativity and non commutativity.
{a, } means the "union” of the phonological features a and § without any order between them. [-o E] and
[® I] make such unions, [-o I] makes a ”substraction”. The substitution proposed in [® E] seems at first
sight mysterious: what is the substitution of a to the unordered set {z, y}? We shall assume here, as a
convention on labelling, that it is the simultaneous substitution of « for both x and y, no matter the order
between x and y is.

With a new lexicon, we can obtain new proofs for syntactic objects, like the following one.

Lezicon:
reads == F reads: ((k\vp)/d)
a 2= Fa:((d®k)/n)
book = Fbook:n

Building a new syntactic object: [5]

F reads : ((k\vp)/d) z:dFz:d

E
y:kFy:k :c:dl—readsx:(E\vp)[\E]]
Fa:((d®k)/n) F book:n y:kx:dkFyreads z:vp
= [/E] = [entropy]
Fa book : d ® k y:kx:dFyreads z:vp
[®F]

F a book reads a book : vp

What is striking here is the fact that we get an order in the label even if we have got through entropy. It
is so because when using [/ E] and [\ E], we necessarily order the labels, and this order (inside the label) is
never destroyed, even when using the entropy rule: at this moment, it is only the order on hypotheses which
is relaxed and this relaxation allows only to discharge them by means of a ®-type, thus resulting, after our
convention, in simultaneous substitution of the string labels = and y inside the string already built in the
consequent.

If things are so, we are lead to the conclusion that order is created in that system by the connectives / and \,
and that the product is mainly used for discharging hypotheses and is therefore required to be commutative.
We can even ask whether the e-product ever occurs in UNINT. We can perhaps completely dispense with our
previous assomption, expressed in [2], according to which a lexical or syntactic object consists in a e-product
of features, something we denoted by Feg... What we viewed in an intuitive, non formal setting, as a product
of "attractors” Fi\,Fs\, ..., F,,\,/F.+1 including a categorial feature ¢ can obviously be expressed formally
without any e-product, simply writing: ((F1\(F2\...(Fx\¢)))/Fnt1)-

These observations lead us now to a real simplification of the system, because if it is so, we can get rid of the
rules for e. The deductions [3,4] will no longer belong to our set of proofs, thus eliminating an embarrassing
fact of potential overgeneration. That means that, from now on, a proper subset of proofs will be selected
inside our deductive system, those proofs will be said admissible relatively to some linguistic criteria. We
set as an assumption:

Proposition 1 (First criterion on admissible proofs) Admissible proofs contain only three kinds of
steps:

e implication steps (elimination rules for / and \)
e tensor steps (elimination rule for ®)
e entropy steps (entropy rule)

From this we conclude now that the operation Merge is much simpler than what we had expected in the first
section: we can eliminate the [¢ I] and [e E] steps, and then, Merge consists in a simple implication-step®.

Attract simply consists in applying the entropy rule to the set of hypotheses which appear on the left-hand
side of our ND-sequents, and then possibly applying the commutativity rule in order to make the attracted
feature close to its attractor, but this is in fact useless simply because [® E] can act on non adjacent features.
Therefore Attract is limited to the operation locate the closest F’, something to which we will return in a
moment. After Attract, F’ must determine the phrase «, a candidate for pied-piping like Chomsky says,
in order to finally make o merge with a category K. In our presentation, « is the phrase associated with
the ®-product type which contains F’ as a conjunct. Informally, it must merge with the syntactic object
having F as an attractor, that means of the form F\¢ (if we still want that all moves are left- and up- ward).

6We could suspect the entropy rule be responsible of a loss of resource sensitivity: of course it is not the case with these
restrictions because we cannot obtain in this subset any proof of the kind A/B + B-oA, but even if we stand in the whole
system, where we can get a proof of such a sequent, this is not a serious problem, firstly because we cannot get the reverse
deduction relation and secondly because such a result does not mean that every object of type A/B and therefore searching a
B on its right in order to become an A, is also an object insensitive to the direction where it looks for B, it only means that if
an object is of type A/B, we of course know that it misses a B in order to become an A. Such a provable sequent is therefore
only a weakening rule, it cannot be used for proving for instance *(B,A/BFA). In other terms, B—oA is underdetermined with
regards to A/B or B\A.

Formally, at the step where «, of type F®v, merge with K of type F\¢, in fact a merge step has already
been done: it was between K and a hypothesis x, of type F. The only thing which happens therefore after
Attract is discharging the hypothesis x, by means of a. To say that F’ must belong to the so-called domain
D(F) of F is to say that, unformally speaking, the product object to which F’ belongs has already merged
during the construction of the object containing the attractor F. In our setting, this merge step has consisted
in merging another hypothesis y at some point of the derivation, a hypothesis which is now discharged by
means of a and [® E] simultaneously with z. Therefore Move is the complete application of [® E] after
locating the correct attracted feature.

Let us return now to Attract. According to the Greed principle, an attractor wants to be satisfied as soon as
possible! This is the same idea which is expressed in the Shortest Move condition and in the Minimal Link
Condition. That simply translates in our setting into the following new admissibility condition:

Proposition 2 (Second criterion on admissible proofs) Hypotheses must be discharged according to
an order First In, First Out.

We can take the metaphor of an agenda for the left hand side of a sequent: hypotheses are put on this
agenda in their order of introduction (we can give them a priority order when they are introduced) and this
indicates emergency tasks to do. As soon this agenda already containing a hypothesis z of type A includes
some complementary hypothesis y of type B, that means a new hypothesis associated with a type B such that
A®B is the type of a lexical object or of a syntactic object that can be built, [® E] must apply, discharging
simultaneously z and y.

It is interesting to note that, looking at the derivation tree, if x is introduced before y, this translates into
the fact that x is lower than y in this tree. The alternative way of doing, if we want to avoid numbering
hypotheses with priority order, is therefore to refer to this relation of heighth in the derivation tree. This
has nevertheless the drawback of enforcing us to refer to the entire derivation and therefore abandoning the
"markovian” principle, something that we wanted to avoid if possible.

Putting aside these ”imperfections”, we get a very simple model... perhaps the simplest we can imagine for
doing so intricated tasks.

5 Rules and lexicon for a minimalist deductive system

To sum up, we give the small set of rules and the structure of lexical entries which seem to be sufficient
for expressing minimalist principles. Let us call MDS (for Minimalist Deductive System) the fragment of
pCILL (partially Commutative Linear Logic) we thus obtain.

Rules
L[(A; Ay FA
—F[(Al,Az)] C A[entropy]
'a:A/B AFQB:B AFB:B Tha:B\A
——— /E] _ A 1V7)
; af: A ATHaB: A

Fl'Fa:A®B Ajx:Ay:BF~:C
LA FAfa/{z,y}]: C

[®E]
to which we must add as criterion for admissible proofs:

Hypotheses must be discharged according to the order First In, First Out.

Lexicon:

A lexical entry consists in an axiom F w : 7 where T is a type:
((Ex\(F5\...(F\(G1 ® G2 ® ... ® Gy, ® A))))/ F1)
where:
e m and n can be any number greater than or equal to 0,
e Iy, ..., F, are attractors,
e Gy, ..., G,, are features,
e A is the resulting category type

Let us notice that if n=0, we simply get a ®-product type, if n=1, we get a type which attracts a phrase
on its right (thus giving a complement), if n>1, the phrases are all attracted on the left, except for the first
attractor (thus giving specifiors).

6 Semantic interpretations

6.1 Labelling types

As indicated above, we consider objects being associated with tuples <PHON, UNINT, SEM>. The most
natural solution for including semantical features is to treat them as another kind of labels on which we shall
return later on.

Borrowing from works inside the categorial or the type-theoretical framework ([14], [16], [15]), we simply
assume that semantical representations are given by proofs’. We can now see that the object that we build
step by step in such a deductive system and was assumed to be of no use on the syntactic side (except for
keeping track of the order of hypotheses) is in fact the object which gives us the semantics of the constructed
object. Actually, it will not give directly such a semantics, this semantics will be extracted from the proof-tree
in a straightforward way.

Semantics is here assumed to be compositional. It is the reason why we aim at treating it by means of
application steps and abstraction steps, like in ordinary lambda-calculus. Compositionality seems in effect
to be the least requirement we can have, in order to have a correct representation of phenomena like scop-
ing, coreferentiality, predicate argument structure, quantificational structure etc. all things being absolutely
necessary to feed up the systems of thought.

Merge is obviously associated with application. Let us imagine for instance an object which would be built
up by means of sole Merge.

Lexicon:

loves == Floves: (vp/d): (1)
mary == Fmary:d: (m)

Building an object:

Floves: (vp/d): (1) Fmary:d:(m)

[/E]

F loves mary : vp : (1(m))

We can simply say that the term we get encodes the proof (borrowing from the famous Curry-Howard ho-
momorphism between intuitionistic proofs and lambda terms ([5])).

Things are more difficult with Move. In fact, in a Move step, an object which has already merged (under
the instance of a variable z) re-merges a second time. Using application associated with Merge, that would

7This belongs in fact to a long tradition in Intuitionistic Logic, which dates back to earlier works by Brouwer, Heyting...
and is also known as the Brouwer-Heyting-Kolomgorov assumption.

entail the application of a semantics S; to a semantics S, which already comes from the application of a
semantics S to S;!

We can solve this apparent paradox by associating with a ®-product FRG were F merges at a higher position
than G, a vector (¢, £), where ¢ is associated with F and ¢ with G. £ is a semantic variable®. But what is
¢? In fact as noted by Stabler ([19]), a raised constituent has also a raised semantic type. But in its second
occurrence, "raised” means that it is lifted in the montagovian sense. For instance, instead of representing the
item Mary by the constant mary, we represent it by the higher order formula AP.P(mary). The semantics Sy
in this case is splitted, in such a way that we have during the first merge step: application of some semantics
S to &, giving So, and in a second merge, application of the lifted semantics in S;, say here for instance:
AP.P(mary) to Se. But this requires So be a predicate, or a lambda term of the form A\z.Q(z), where x is
an individual variable, and in fact we have generally got at this place a saturated predicate Q(§).

The way to solve this problem of conflicting types is to perform an abstraction step just before the higher
order formula applies, involving an abstraction precisely on the variable £ wich now occurs in the body of
the formula.

Moreover, ”syntactic” proofs are transformed into ”semantic” ones for the following reasons: the semantic
world is insensitive to the direction in which arguments are found and therefore the distinction between / and
\ collapses. Only —o is used. For the time being, we don’t know whether any product (with its correlatives
pairing and projections) has a role to play on this semantic side and therefore we shall dispense with them.
Finally and more importantly, a referential semantics works only with types denoting referential entities(e)
and truth values (t) and all functional entities we can build from them by means of the only connective —o°.
The extracted semantic proof therefore partly results from a translation of syntactic types into semantic
ones, a translation that we can see as a homomorphism #:

4) =

vp) € {t, (e—ot), (e—o(e—ot))...}
) € {e, ((e—0X)—0X)}, where X € {t,(e-ot),(e—o(e-ot))...}

H(
H(
H(E
H(K/K') = H(K'\K) = (H(K')-oH(K))

We may see therefore that there is no room for any [® E] or [E] in image proofs, but there still remains
hypotheses labelled with variables, hypotheses that can only be discharged by [—o I] steps. Entropy steps
are useless and therefore suppressed. [/ E] and [\ E] steps are replaced by [-o E] steps. Because hypotheses
must be discharged, they are discharged just before [-o E] steps consisting in applying the semantics of the
coindezed higher order feature, or if there are other coindexed hypotheses, just before [-o E] steps consisting
in cancelling variables associated with them.

We moreover assume that all variables labelling hypotheses in syntactic proofs are substituted by the corre-
sponding semantic components of the product types used to discharge them in the syntactic proof. Occur-
rences of product types are therefore suppressed. Let us see for instance what happens with the very short
example given by loves Mary:

Lexicon:

loves u= I loves: ((k\vp)/d): (Az.l(z))
mary == Fmary:k®d: (AP.P(m),§)

Building a syntactic object:

8i.e. a variable which occurs in the semantic component

9or perhaps — if we find that the semantic world is also insensitive to the amount of resources, but in this case, the
problem will be solved siply by adding the unary connective ! of Linear Logic, according to the well known decomposition:
A — B =!A-oB.

Floves : ((k\vp)/d) z:dFx:d

o = [/E]
y:kFy:k m:dl—lovesm:(k\vp)[\E]
y:k;x:dkFyloves z:vp
_ — [entropy]
Fmary:d®k y:k,m:dl—ylovesm:vp[B
b2y
F mary loves mary : vp
Building the corresponding semantic object:
FAzl(z):(eot) x:ekFx:e
(@): (e ot) .
ek l(x):t 1
—0
F AP.P(m) : ((e—ot)—ot) F Az.l(z) : (e—ot) o]
—0
F1l(m) : vp
The following example concerns subject-raising. we assume:
mary 2= Fmary:k®d: (Au.u(mary),)
seems = F seems: ((k\ip)/vp) ® (vp/vp) : (0, \v.seem(v))
towork = Ftowork : (d\vp) : Ay.to_work(y)

We can represent the derivation of Mary seems to work by the following tree (thus using the natural deduction
presentation, put upside down):

ip

m(,w/\

K (K\ip)

_seemsZ/\
((k\ip)/vp)
////\\\\
(vp/vp)*
/)uork

' (d\vp)

where indices refer to hypotheses which are discharged altogether. Then, eliminating semantically empty
nodes and transforming the tree along the lines stated above, we obtain:

seem(to_work(mary))

t
/\
Au.u(mary) Az.seem(to_work(x))
((e—ot)—ot) (e—ot)"
t
/\
Av.seem(v) to-work(z)
(t—ot) t

/\

Ay.to_work(y) T
(e—ot) el

6.2 Note on the interpretative components

It is worth to notice here that in order to produce phonological and logical forms, we have not yet used
the distinction between weak and strong features, as done in previous works by Stabler [18]. In most cases,
it suffices in fact to label not the entire types themselves, but their factors. It is what was done in the
previous subsection by using vectors associated with product types, but the same could have been done for
phonological interpretations.

Unfortunately, this cannot be generalized: in a SVO language, the DP-subject is overtly raised and the
DP-object is only covertly raised, and we cannot have separate entries for DP-subjects and DP-objects.
This legitimates a kind of distinction concerning only uninterpreted features like case. In the phonological
component, the attractor associated with such a feature must indicate whether it requires a plain phonology
or an empty one. We shall write k™ for the first case, and the lexical entries will be labelled not by vectors,
but by multi-sets, the choice of the order being made only at the discharging step. In case of phonology,
nodes which will not receive any content will be labelled by e, in case of semantics, they will be simply
deleted.

This requires a more complete formulation of the [® E] law, which will be stated further.

7 Unsolved problems and perspectives

7.1 Remnant Movement

In some new works in the Chomskyan paradigm (cf. Chomsky himself in the quoted draft, but also Koopman
and Szabolcsi ([10]), Stabler([19])), Head Movement seems to be useless. For instance, Stabler argues
in favour of grammars without head movement and without covert movement, thus promoting remnant
movements, where a "remnant” is:

a constituent from which material has been extracted
and Stabler adds:

Moving a constituent from which material has already been extracted means that traces of
earlier movements may be carried to positions where they are no longer c-commanded by their
antecedents, something which was banned in earlier theories.

Remnant movement is mainly motivated by examples from Hungarian. ”Developing an observation of Ke-
nesei, Koopman and Szabolcsi observe the folloowing pattern in negated or focused sentences of Hungarian,
schematized on the right where ”M” is used to represent the special category of verbal modifiers like haza-":

(1) Nem fogok akarni kezdeni haza-menni [V1 V2 V3 M V4]
(not will want begin home-go)

(2) Nem fogok akarni haza-menni kezdeni [V1V2M V4 V3]
--(not will want home-go begin)

(3) Nem fogok haza-menni kezdeni akarni [VIM V4 V3 V2]
(not will home-go begin want)

Stabler shows that it is possible to have an account of such phenomena by giving lexical entries features
which trigger the "rolling-up” of verb phrases. The features he gives can be translated in our framework by:

Lexicon:

Vi u= FV1:(v/v)

V2 = FV2:(v/v)

V2 = FV2:(F\v)/v)

V3 u= FV3:(v/v)

V3 = FV3:(F\v)/v)

V3 = FV3:(F\(vev))/v)
V4 == FV4:((@\v)/m)

V4 == FV4:(@\(ve7))/m)
M = FM:n®n

A proof giving the correct order [V1 V2 V3 M V4] is the following (in tree-format):
V4:(@\(ve7v))/m) z:m
y:m Vdz : (m\(ve 7))
V3:(v/v) yVdzx :v
V2:(v/v) V3yVdz : v
V1:(v/v) V2V3yVdx v
M: m®m V1V2V3yVdz : v
VIV2V3MV4:v

A proof giving the correct order [V1 M V4 V3 V2] is the following:
V4:(m\(vev)/m z:m

yim Vie: (@\(vev)) V3 (\o)/v) o v V2 (@) Y
M:m®m yVidz :v®T v V3y' : (F\(v®T)) v V2y': (W\v)
MV4:vQ®vV 2V3y vev V1:(v/v) z'v2y' v
MVAV3 vV Vig" vy i v

VIMVAV3V2:v
If we analyze such a proof-system, we perceive that:

that V4 be ((@\(v ® ¥))/m) and M be m ® @ entails the inversion
of M and V4, resulting in MV4 :v® 7V,

that V3 be ((W\(v®7))/v) and MV4 be v®7 entails the inversion

of MV4 and V3, resulting in MV 4V 3 which is still MV4:v ® 7,

(let us note that therefore, at this stage, the same processus could
..undefinitely be continued)

that V2 be ((¥\v)/v) and MV4V3 be v ® ¥ entails the inversion
of MV4V 3 and V2 thus resulting in MV4V3V2 of type v,

and finally that V1 be a (v/v) and MV4V3V2 be v gives
V1IMV4V3V2 of type v.

7.2 Head Movement

Despite the promising view provided by remnant movement, we can still wish to keep so called head move-
ments, particularly for traditional questions like V-to-I and I-to-C movements. In our previous (troncated)
examples, we have not yet tried to give an account of the introduction of inflection features. We know that
inflection is responsible for the nominative case. In our present words, that means that only an inflected

sentence has an attractor for nominative case. In previous works ([18]), Stabler used to distinguish between
weak and strong categorial features (for instance =V, =C, ... besides =v, =c, ...). If we follow the new
trend, and particularly hints given by Chomsky, according to whom:

The concept strength, introduced to force violation of Procrastinate, [also] has no place — which
is just as well; strength was a feature of a feature, not an attractive notion

we are lead to use this notion of strength of a feature as rarely as possible. In fact, it seems that in most
cases, the design of lexical entries (particularly the precise way to endow them with phonological and se-
mantic features) enables us to dispense with the opposition weak/strong for features. It is an open question
to know whether this distinction must be kept as ”a true imperfection” or not.

From now on, we assume an inflection feature be introduced by means of a category ((k\t)/vp), ”phono-
logically” associated with some inflectional morpheme. The difference between an infinitival (to read) and a
tensed verb (reads, read...) lies in the fact that the former can be directly inserted in a derivation (directly
here means: without any prior hypothesis) while the latter is associated with a e-product, like:

reads =+ ((k\t)/vp) e ((k\(d\vp))/d)

It is worth to notice here that this provides an extension of our previous typing system. We assume from
now on that types are no longer only of the form:

(FEA\(F\.(Fo\(G1 © G2 ® ... ® G ® A)))) [F1)

but they can be also e-products of such types.
Otherwise, this leads us to re-use a rule that we had provisionally abandonned: the [e E] rule, which requires
discharged hypotheses to be ordered and composed by ’;’.
Rule:
'AeB A[(4;B)+C
Al +C

[¢E]

The reason to introduce this new device is linked to the HMC'? which is assumed to still hold as soon as we
keep this notion of Head Movement. It means that two head movements never cross (while they are allowed
to cross phrasal movements): non commutativity of e rules out such a crossing and therefore ”encapsulates”
HMC.

As a matter of fact, because we know a head movement can cross a phrasal one, that can be too strong a
constraint. It is therefore necessary to introduce a kind of structural rule which allows to perform associa-
tivity w.r.t. ;> and ’,’, a rule that we name mized associativity, along the lines of [14], [11] etc.

Mized Associativity rule:

O[(I'; (A, A7) - A
O[((T;4),AN] - A

[MA]

We can then get the following deduction:
F likes : ((k\t)/vp) o ((k\(d\vp))/d) subproof

2. T2 2 : 2 : i [+E]
y :kkFy®:k z° :d b likes ©° m likes m : (k\t)
Pa— : . \E]
y? ka2 i ak y? likes 22 m likes m : t
_ — [entropy]
Fp:k®d y2:k,:1;2:dl—y2likesx2mlikesm:t

[®F]
F p likes p m likes m : t

10Head Movement Constraint

subproof:
¢:((R\(@\vp))/d) F €: ((K\(d\vp))/d) ' :dFa':d

1.e 1. % - 1 1. % [/E]
y'likbytik €: ((k\(d\vp))/d);z~ :d & : (k\(d\vp)) 0]
yb B (E\@\vp)/d) ot rar gl € ot : (@\vp)
[entropy]
Fm:k®d gt ik, € ((k\(d\vp))/d),z' : d -y € &' : (d\vp) ®F]
®
z2:d+- 2% :d € ((k\(d\vp))/d) F m £ m : (d\vp) \E]
¢ ((k\t)/vp) - ¢ : ((k\t)/vp) @® : d; € ((k\(d\vp))/d) - a® m & m:vp UE]
(¢ : ((®\t)/vp); (£ : (B\(d\vp))/d); z* : 4)) F (a’mgm : (K\t)
— — - - — [entropy]
(¢ ((®\t)/vp); (€ : (B\(a\vp))/d),z” : @) I (z’mém : (k\t)
[MA]
z”: d)

((¢: ((&\t)/vp);€ : (K\(d\vp))/d)),z° : d) I Ca®mém : (k\t)
7.3 Expletives and other phenomena
Let us look at the following paradigm, an example from Chomsky:

(i) they [elected an unpopular candidate]

(ii) there was [elected an unpopular candidate]
(iii) an unpopular candidate was elected

(iv) there was an unpopular candidate elected

Chomsky argues that ”case (ii) involves feature attraction alone, yielding agreement of INFL and its associate
‘candidate’. Case (iii) involves feature attraction followed by Merge of ”an unpopular candidate” (=P (F”’))
to the category headed by INFL, yielding dislocation to SPEC-INFL. That some phrase must be merged
in this position is determined by the Extended Projection Principle (EPP), an independant property. The
choice of what is merged is determined by the initial numeration NUM; if NUM contains an expletive, that
is merged, by preference of Merge over Mowe; if not, then the most local accessible phrase is merged — in
(iii), the pied-piped phrase P(F’).”

If this was true, the expletive "there” would be the bearer of a nake case-feature, attracted by k in the
subject position. We would have some particular syntactic object (perhaps built by using the [® I]-rule —
not yet used —):

(there : k) ® (an unpopular candidate : d)

with the phonological feature there raising to the specifier position whereas an unpopular candidate remain-
ing in place. There would be a rivality with the other, more classical, object:

an unpopular candidate : k ® d

Because was elected is supposed to be of type ((k\vp)/d), we would obtain in the second case (that means
(ii)):
an unpopular candidate was elected an unpopular candidate
instead of:
there was elected an unpopular candidate

Such a phenomenon could occur in many other contexts. We could have for instance:

a man sleeps

*there sleeps a man

Chomsky’s arguments do not therefore give the good explanation. We suggest here that getting (ii) in pref-
erence to (iii) or vice-versa depends on the use of be. Suppose we have the following lexicon:

Lewicon: there = F there:k
was = Fwas: (E_\(t/vp_))
was = Fwas: ((k\t_)/(k\vp))
elected = | elected: ((k\vp)/d)

and suppose an unpopular candidate be of type k ® d. We have the two following deductions'!.

F elected : ((k\vp)/d) z:dFz:d

E
F there :k F was : (k\(t/vp)) g y:kFy:k x:dF elected z : (k\vp)] V£l
there was : (t/vp) y:k,x:dF yelected z : vp]
Fauc:k®d y:k,z:dF there was y elected x : t
[®E]

F there was an unp cand elected an unp cand : t

Felected : ((k\vp)/d) z:dFz:d
F was : ((k\t)/(k\vp)) x : d F elected x : (k\vp)
y:kFy:k x :d b was elected x : (k\t)

E]

[/E]

\E]

Fauc:k®d y:k,x:dFy was elected z : t

F an unp cand was elected an unp cand : t

We must notice that the former proof can equally be presented as a deduction of (iv):there was an unpopular
candidate elected. Let us also compare with French examples like:

(i) un candidat a été élu

(ii) il a été élu un candidat
(iii) un candidat a été élu
(iv) il y a eu un candidat élu

We can assume here that the locution il y a is already given the type (t/vp) in the lexicon.
Some remarks can be made after these examples:

e such a treatment of the expletive problem requires only one thing more: that we now accept second
order-types in the lexicon,that means types which take as their arguments not only atomic features
but also complex ones (like here (k\vp)), something which is not possible in the earlier frameworks
(like Stabler’s minimalist grammars). This kind of generalization is due to the ’categorial grammarian’
character of our calculus,

e going back to Chomsky’s arguments: they are globally taken into account: when the expletive there
'belongs to NUM’, it must be consumed, and that necessarily entails the selection of the verbal form
was : (k\(t/vp)), when it doesn’t, the deduction is correct only if the ’auxiliary’ attractor k associated
with the past participle is itself consumed by was, which at this time, is of type ((k\t)/(k\vp)),

e things do not result from a ’'preference of Merge over Move’ properly speaking, because there is a Move
step in both analyses, but rather from the difference between two Merge-steps, one relying on a second
order-Merge-step.

lwhere obvious entropy steps are omitted.

It is interesting to notice that Chomsky establishes a strong relation between these expletive constructions
and ’long-distance effects’ like they occur in unbounded dependencies. In fact, we can see that it is the very
same mechanism as for the above expletives which can explain long-distance extractions like in:

(i) what book do you think that Mary likes?
(ii) what book do you think Mary likes?
(iii) who do you think likes those books?

if we use the following lexicon:

Lezicon
what book = Fwvh®k®d
do = F((@\cp)/t) o ((E\t)/D)
likes w= F((k\t)/vp) o ((k\(d\vp))/d)
think ==k ((d\vp)/(wh\cp))
think n= F((d\vp)/t)
that m= F ((wh\cp)/t)

Obviously, the occurrence of a three-components product (and by generalizing, of an n-components product)
compels us to slightly change the [® E] and [e E] rules, and our ’second criterion on admissible proofs’. The
criterion is now formulated as:

Proposition 3 ((new) second criterion on admissible proofs) n hypotheses (n>2) are discharged
by a product w, of n factors according to the order First In, First Out, or by a product m,11 of n+1
factors, strictly containing m,, in which case, the n+1 hypotheses are discharged in such a way that the last
hypothesis introduced in the deduction (which corresponds to the (n + l)th factor) is discharged immediately
after introduction, and are therefore also said to be discharged in the order First In, First Out.

The formulation of the new [® E] is the following, (that of [e E] can be deduced from it straightforwardly).
F'F{a,6 e} A @A 1®.. @A Ajzp: Ap,Tpe1 2 Ap—ty et t A By C
DAFA{a, €.y} /{z1, 22, .0y2,}] : C

[©E]

where some hypotheses A; may be starred and where « is substituted to the z; labelling the most recent
hypothesis A;*, or if there is not, the first A; introduced (which is generally labbelled A).

8 Conclusion

We have presented here a logical ground for 'minimalist’ ideas, by following Chomsky’s proposal as close as
we could. This is not simply for sake of logics... Following Husserl and Cavailles [2], we believe in a mathesis
universalis, expressed by formal logic, the aim of which is to reconstruct any object in general (”Que fait
le mathématicien sinon décrire ou fizer ce qui concerne tout objet, élément abstrait d’une multiplicité?”[2,
p.48]). What is convincing in Chomsky’s work is precisely this effort towards exploring the linguistic object
in general, starting from minimal hypotheses. We may postulate that such an enterprise, which is rather
speculative in fact, is on the lines of logic, as it was conceived by such philosophers. The proposal we make, of
applying systems which were created from a more general perspective to linguistics, is therefore meaningful
in the sense that in doing so, we describe a linguistic object as a particularisation of more general ones, thus
trying to accomplish a step on the way towards the unification of science.

Such an application is also legitimated by the insights it provides on new solutions concerning some linguistic
problems like expletives and unbounded dependencies.

It remains to show how theoretical results on such logical systems can be applied to the particular one in
order for instance to introduce new insights on parsability and computational complexity. It seems already
possible to claim that polynomiality is ensured by the fact that partially non-commutative linear logic,
limited to elimination rules is already polynomial (C. Retoré, forthcoming).

References

[1] M. Abrusci and P. Ruet. Commutativity and non-commutativity. Technical report, Universita di Roma
Tre, Rome, 1998.

[2] Jean Cavailles. Sur la logique et la théorie de la science. Bibliotheque de Philosophie Contemporaine.
Presses Universitaires de France, Paris, 1960.

[3] N. Chomsky. The Minimalist Program. The MIT Press, 1996.
[4] N. Chomsky. Minimalist inquiries: the framework. Technical report, MIT, Cambridge, 1998.

[5] P. de Groote, editor. The Curry-Howard isomorphism. Cahiers du Centre de Logique. Université
catholique de Louvain-la-Neuve, Louvain-la-Neuve, 1995.

[6] P. de Groote. Partially commutative linear logic: sequent calculus and phase semantics. In M. Abrusci
and C. Casadio, editors, Proofs and Linguistic Categories, pages 199—208. CLUEB - University of Chieti,
1996.

[7] M. Dymetman. Group theory and computational linguistics. Journal of Logic, Language and Informa-
tion, 7:461-497, 1998.

[8] J.Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1-102, 1987.
[9] R. Kayne. The Antisymmetry of Syntazx. The MIT Press, 1994.
[10] H. Koopman and A. Szabolcsi. Verbal complexes. Technical report, UCLA, Los Angeles, forthcoming.

[11] N. Kurtonina and M. Moortgat. Structural control. In P. Blackburn and M. de Rijke, editors, Specifying
Syntactic Structures, Studies in Logic, Language and Information, pages 75-113. CSLI Publications,
Stanford, 1997.

[12] J. Lambek. The mathematics of sentence structure. American Mathematical Monthly, 65:154-170, 1958.

[13] A. Lecomte and C. Retoré. Towards a minimal logic for minimalism. In G. van Kruijf, editor, Formal
Grammar’99, Utrecht, 1999. ESSLLI’99.

[14] M. Moortgat. Categorial type logics. In J. van Benthem and A. ter Meulen, editors, Handbook of Logic
and Language, chapter 2, pages 93—178. Elsevier, 1997.

[15] G. Morrill. Type Logical Grammar, Categorial Logic of Signs. Kluwer, Dordrecht, 1994.

[16] A. Ranta. Type Theoretical Grammar. Oxford University Press, 1994.

[17] C. Retoré. Calcul des séquents ordonnés. These, Universite Paris-7, 1993.

[18] E. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects of Computational Linguistics,
volume 1328 of LNCS/LNAI pages 68-95. Springer, 1997.

[19] E. Stabler. Remnant movement and complexity. Technical report, UCLA, Los Angeles, 1999.

